Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular scale drug delivery from the inside out

30.03.2006


Mesoporous nanospheres focus of Ames Laboratory research



Delivering a dose of chemotherapy drugs to specific cancer cells without the risk of side affects to healthy cells may one day be possible thanks to a nanoscale drug delivery system being explored by researchers at the U.S. Department of Energy’s Ames Laboratory.

Using tiny silica particles call mesoporous nanospheres to carry drugs inside living cells, Ames Laboratory chemist Victor Lin is studying different methods to control whether or not the particle delivers its pharmaceutical payload.


“First, the nanospheres are only about 200 nanometers in diameter, roughly the size of a virus, so they won’t trigger an immune response in the body,” Lin said. “They’re also biocompatible so they can be readily absorbed by the cells.”

But it’s the structure of the nanospheres that makes drug delivery possible. The spheres have thousands of parallel channels running completely through them. Through capillary action, the spheres can soak up molecules of the drug to be delivered. When the channels are filled, the ends of channels are “capped” to safely seal the drug inside. Once the caps are in place, the nanospheres are “washed” to remove the drug from the outer surface.

The type of material used for the end caps, how they’re held in place, and how they’re released is the focus of Lin’s work. The caps can be dendrimers, biodegradable polymers, genes, proteins, metallic nanoparticles, or semiconductor nanocrystals – also known as quantum dots – and are held in place by chemical bonds. Once the nanospheres are inside the target cells, a trigger is used to pop the caps off and release the drug.

“We’re looking at two levels of control,” Lin said of the trigger mechanism. “One level is to have the cell control the release and the other would be to control the release externally.”

Lin explained that the chemical bond holding the cap in place can be engineered to be unphased by chemicals present in normal cells. However, in cancer cells these chemicals, such as antioxidants, appear in much higher concentrations and would break the bonds on the caps and release the drugs. In this way, only cancer cells could be targeted with powerful chemotherapy drugs such as Taxol or doxorubicin, while the nanospheres inside the normal cells would remain capped and therefore not cause unwanted side affects by damaging healthy cells.

To achieve external control, Lin is using iron-oxide nanoparticle caps which can be manipulated by a magnetic field. In a simple demonstration of the principle, Lin holds a refrigerator magnet up to a liquid-filled glass vial containing human cervical cancer cells grown in vitro that contain nanospheres capped with iron-oxide particles. The cells slowly migrate and cluster to the side of the vial next to the magnet.

“By using a powerful magnet, we can first concentrate the nanospheres at a particular point, such as a tumor site, and then use the magnetic field to remove the caps and release the drug,” Lin said. “The advantage of using a magnetic trigger as opposed to a ultraviolet light trigger is that there’s no limit to the depth of tissue we are able to probe … think of an MRI.”

Beyond the possibilities for intercellular drug delivery, the nanospheres may provide the key to studying what takes place within a cell. Currently, scientists have difficulty introducing chemicals or genes into cells without either damaging the cell or causing a chain-reaction of events that can’t be tracked.

“With current gene therapy, it’s possible to switch genes on and off, but you don’t really know if you are affecting other parts and processes of the cell as well,” Lin said. “You may be able to get a plant cell to produce a certain desired product, but the yield may drop significantly.”

By using externally controlled nanospheres, Lin explains that it may be possible to sequentially release genes, chemical markers and other materials within cells in order to track what happens and what specific changes take place. This phase of Lin’s research ties into a larger plant metabolomics project at Ames Laboratory.

Ames Laboratory is operated for the Department of Energy by Iowa State University. The Lab conducts research into various areas of national concern, including energy resources, high-speed computer design, environmental cleanup and restoration, and the synthesis and study of new materials.

Kerry Gibson | EurekAlert!
Further information:
http://www.ameslab.gov

More articles from Materials Sciences:

nachricht Osaka university researchers make the slipperiest surfaces adhesive
18.10.2017 | Osaka University

nachricht Think laterally to sidestep production problems
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>