Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular scale drug delivery from the inside out

30.03.2006


Mesoporous nanospheres focus of Ames Laboratory research



Delivering a dose of chemotherapy drugs to specific cancer cells without the risk of side affects to healthy cells may one day be possible thanks to a nanoscale drug delivery system being explored by researchers at the U.S. Department of Energy’s Ames Laboratory.

Using tiny silica particles call mesoporous nanospheres to carry drugs inside living cells, Ames Laboratory chemist Victor Lin is studying different methods to control whether or not the particle delivers its pharmaceutical payload.


“First, the nanospheres are only about 200 nanometers in diameter, roughly the size of a virus, so they won’t trigger an immune response in the body,” Lin said. “They’re also biocompatible so they can be readily absorbed by the cells.”

But it’s the structure of the nanospheres that makes drug delivery possible. The spheres have thousands of parallel channels running completely through them. Through capillary action, the spheres can soak up molecules of the drug to be delivered. When the channels are filled, the ends of channels are “capped” to safely seal the drug inside. Once the caps are in place, the nanospheres are “washed” to remove the drug from the outer surface.

The type of material used for the end caps, how they’re held in place, and how they’re released is the focus of Lin’s work. The caps can be dendrimers, biodegradable polymers, genes, proteins, metallic nanoparticles, or semiconductor nanocrystals – also known as quantum dots – and are held in place by chemical bonds. Once the nanospheres are inside the target cells, a trigger is used to pop the caps off and release the drug.

“We’re looking at two levels of control,” Lin said of the trigger mechanism. “One level is to have the cell control the release and the other would be to control the release externally.”

Lin explained that the chemical bond holding the cap in place can be engineered to be unphased by chemicals present in normal cells. However, in cancer cells these chemicals, such as antioxidants, appear in much higher concentrations and would break the bonds on the caps and release the drugs. In this way, only cancer cells could be targeted with powerful chemotherapy drugs such as Taxol or doxorubicin, while the nanospheres inside the normal cells would remain capped and therefore not cause unwanted side affects by damaging healthy cells.

To achieve external control, Lin is using iron-oxide nanoparticle caps which can be manipulated by a magnetic field. In a simple demonstration of the principle, Lin holds a refrigerator magnet up to a liquid-filled glass vial containing human cervical cancer cells grown in vitro that contain nanospheres capped with iron-oxide particles. The cells slowly migrate and cluster to the side of the vial next to the magnet.

“By using a powerful magnet, we can first concentrate the nanospheres at a particular point, such as a tumor site, and then use the magnetic field to remove the caps and release the drug,” Lin said. “The advantage of using a magnetic trigger as opposed to a ultraviolet light trigger is that there’s no limit to the depth of tissue we are able to probe … think of an MRI.”

Beyond the possibilities for intercellular drug delivery, the nanospheres may provide the key to studying what takes place within a cell. Currently, scientists have difficulty introducing chemicals or genes into cells without either damaging the cell or causing a chain-reaction of events that can’t be tracked.

“With current gene therapy, it’s possible to switch genes on and off, but you don’t really know if you are affecting other parts and processes of the cell as well,” Lin said. “You may be able to get a plant cell to produce a certain desired product, but the yield may drop significantly.”

By using externally controlled nanospheres, Lin explains that it may be possible to sequentially release genes, chemical markers and other materials within cells in order to track what happens and what specific changes take place. This phase of Lin’s research ties into a larger plant metabolomics project at Ames Laboratory.

Ames Laboratory is operated for the Department of Energy by Iowa State University. The Lab conducts research into various areas of national concern, including energy resources, high-speed computer design, environmental cleanup and restoration, and the synthesis and study of new materials.

Kerry Gibson | EurekAlert!
Further information:
http://www.ameslab.gov

More articles from Materials Sciences:

nachricht Engineers develop smart material that changes stiffness when twisted or bent
15.02.2018 | Iowa State University

nachricht Breaking local symmetry: Why water freezes but silica forms a glass
14.02.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>