Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Defect and pore concentration simulation in an amorphous alloy of boron and cobalt

23.03.2006


Simulation of local microstructure of amorphous alloys



Modern engineering places increasing demands on components. It is the job of the designers and materials scientists to create components that are up to the challenge.

Many new materials and components can be time consuming and expensive to manufacture with costs escalating if samples or trials prove unsuitable. Computer modelling goes some way to minimizing the developments costs and fast tracking development.


Some of the more sophisticated computer modelling programs are able to model the material and its structure before test samples even are produced. This includes the location of flaws and prediction of lifetime and failure.

In the case of amorphous materials, pores and clusters of pores can radically change the properties of the material when compared to a solid crystal. In this paper by Pham Khac Hung, Do Minh Nghiep, Hoang Van Hue and Nguyen Van Hong from Hanoi University of Technology, they were able to simulate the microstructure in the amorphous system CoxB1-x to provide information on pore clusters, localized structural characteristics and pore concentration.

Their calculated results corresponded with experimental results and found the number of pores was largely influenced by changes in boron concentration. The calculation of angle, pore number, atom number and free volume distributions reveals that increasing the boron concentration in the system disorders the structure of amorphous alloys. It also showed that there were more pores found around cobalt atoms than around boron atoms.

Dr. Ian Birkby | EurekAlert!
Further information:
http://www.azom.com/Details.asp?ArticleID=3306

More articles from Materials Sciences:

nachricht Gelatine instead of forearm
19.04.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Computers create recipe for two new magnetic materials
18.04.2017 | Duke University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>