Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover How Coffee Can Reduce Risk of Pancreatitis

14.03.2006


Scientists at the University of Liverpool have found how coffee can reduce the risk of alcohol-induced pancreatitis.



Pancreatitis is a condition in which the pancreas becomes inflamed, causing severe abdominal pain. It is often triggered by alcohol consumption which causes digestive enzymes to digest part of the pancreas.

Scientists have known for some time that coffee can reduce the risk of alcoholic pancreatitis, but have been unable to determine how. Researchers at the University have now discovered that caffeine can partially close special channels within cells, reducing to some extent the damaging effects of alcohol products on the pancreas.


Professor Ole Petersen and Professor Robert Sutton, from the University’s Physiological Laboratory and Division of Surgery, have found that cells in the pancreas can be damaged by products of alcohol and fat formed in the pancreas when oxygen levels in the organ are low. Under these conditions, excessive amounts of calcium are released from stores within the cells of the pancreas. Special organelles, called mitochondria, also become damaged and cannot produce the energiser that normally allows calcium to be pumped out of the cells. The excess calcium then activates protein breakdown, destroying the cells in the pancreas.

Professor Petersen explains: “The primary cause of the build up in calcium ion concentration is movement of calcium ions from a store inside the cells into the cell water through special channels in the store membrane. We have found that caffeine, present in drinks such as coffee can at least partially close these channels. This explains why coffee consumption can reduce the risk of alcoholic pancreatitis. The caffeine effect, however, is weak and excessive coffee intake has its own dangers, so we have to search for better agents.

“At the moment there is no specific pharmacological treatment for pancreatitis. As a result of this research however, we can, for the first time, begin to search for specific chemical agents that target the channels causing the excessive liberation of calcium ions inside the cells, which is where the problem originates. We are also hoping that these findings can be used to warn against the dangers of binge drinking. Some of the effects of the non-oxidative alcohol products on isolated pancreatic cells cannot be reversed, explaining why excess alcohol intake can be so dangerous.”

The research by Professor Petersen and Professor Sutton, which is supported by the Medical Research Council, is published in TRENDS in Pharmacological Sciences and Gastroenterology.

Samantha Martin | alfa
Further information:
http://www/liv.ac.uk/newsroom

More articles from Materials Sciences:

nachricht New pop-up strategy inspired by cuts, not folds
27.02.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Let it glow
27.02.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>