Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoparticles create biocompatible capsules

08.03.2006


An innovative strategy of mixing lipids and nanoparticles to produce new drug and agricultural materials and delivery vehicles has been developed by researchers at the University of Illinois at Urbana-Champaign.



"This is a new way to make nano-size capsules of a biologically friendly material," said Steve Granick, a professor of materials science and engineering, chemistry and physics. "The hollow, deformable and biofunctional capsules could be used in drug delivery, colloidal-based biosensors and enzyme-catalyzed reactions."

Lipids are the building blocks of cell membranes. The construction of useful artificial lipid vesicles was previously not possible, because the vesicles were too delicate. Granick and graduate student Liangfang Zhang found a way to stabilize lipids and stop their destruction. The researchers describe their technique in a paper accepted for publication in the journal Nano Letters, and posted on its Web site.


To stabilize lipids, the researchers begin by preparing a dilute solution of lipid capsules of a particular size. After encapsulating chemicals in the capsules or adsorbing molecules on their surfaces, they add charged nanoparticles to the solution. The nanoparticles adhere to the capsules and prevent further growth, freezing them at the desired size. The lipid concentration can then be increased without limits.

"We form an ’army’ of uniform capsules, and then we can use them in a military fashion," said Granick, who also is a researcher at the Frederick Seitz Materials Research Laboratory and at the Beckman Institute for Advanced Science and Technology. "That is, the capsules are well behaved, and follow orders without wandering off and propagating."

As proof of concept, Granick and Zhang encapsulated fluorescent dyes within lipid capsules. No leakage occurred, and the lipids proved stable against further fusion.

"This opens the door to using biologically friendly capsule delivery vehicles in exciting new health and agricultural applications," Granick said. "Chemical reactions can be performed within individual isolated capsules, or on groups of capsules linked together like boxcars in a train."

The biocompatible containers could carry cargo such as enzymes, DNA, proteins and drug molecules throughout living organisms. They could also serve as surrogate factories where enzyme-catalyzed reactions are performed. By attaching biomolecules to the capsule’s surface, novel colloidal-size sensors could be produced.

An additional use for stabilized lipid capsules is the study of drug behavior. "A drug contained in this nano environment is like a fish swimming inside a bowl," Granick said. "We can study the ’fish’ in detail, and it won’t swim away."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>