Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoparticles create biocompatible capsules

08.03.2006


An innovative strategy of mixing lipids and nanoparticles to produce new drug and agricultural materials and delivery vehicles has been developed by researchers at the University of Illinois at Urbana-Champaign.



"This is a new way to make nano-size capsules of a biologically friendly material," said Steve Granick, a professor of materials science and engineering, chemistry and physics. "The hollow, deformable and biofunctional capsules could be used in drug delivery, colloidal-based biosensors and enzyme-catalyzed reactions."

Lipids are the building blocks of cell membranes. The construction of useful artificial lipid vesicles was previously not possible, because the vesicles were too delicate. Granick and graduate student Liangfang Zhang found a way to stabilize lipids and stop their destruction. The researchers describe their technique in a paper accepted for publication in the journal Nano Letters, and posted on its Web site.


To stabilize lipids, the researchers begin by preparing a dilute solution of lipid capsules of a particular size. After encapsulating chemicals in the capsules or adsorbing molecules on their surfaces, they add charged nanoparticles to the solution. The nanoparticles adhere to the capsules and prevent further growth, freezing them at the desired size. The lipid concentration can then be increased without limits.

"We form an ’army’ of uniform capsules, and then we can use them in a military fashion," said Granick, who also is a researcher at the Frederick Seitz Materials Research Laboratory and at the Beckman Institute for Advanced Science and Technology. "That is, the capsules are well behaved, and follow orders without wandering off and propagating."

As proof of concept, Granick and Zhang encapsulated fluorescent dyes within lipid capsules. No leakage occurred, and the lipids proved stable against further fusion.

"This opens the door to using biologically friendly capsule delivery vehicles in exciting new health and agricultural applications," Granick said. "Chemical reactions can be performed within individual isolated capsules, or on groups of capsules linked together like boxcars in a train."

The biocompatible containers could carry cargo such as enzymes, DNA, proteins and drug molecules throughout living organisms. They could also serve as surrogate factories where enzyme-catalyzed reactions are performed. By attaching biomolecules to the capsule’s surface, novel colloidal-size sensors could be produced.

An additional use for stabilized lipid capsules is the study of drug behavior. "A drug contained in this nano environment is like a fish swimming inside a bowl," Granick said. "We can study the ’fish’ in detail, and it won’t swim away."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>