Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Profiling amniotic fluid yields faster test for infection and preterm birth risk, researchers find

03.02.2006


Paper receives March of Dimes award



Researchers at the 26th Annual Society for Maternal-Fetal Medicine (SMFM) meeting today announced that profiling certain proteins in amniotic fluid is the fastest and most accurate way to detect potentially dangerous infections in pregnant women, and also can accurately predict whether premature delivery is imminent.

Diagnosing intra-amniotic inflammation or infection is crucial because these conditions can lead to the death of the fetus or other serious consequences of preterm birth, including brain damage, lung and bowel injury.


The study’s authors were recognized by an award from the March of Dimes, marking the third year that the organization has honored SMFM members for cutting-edge prematurity research. The March of Dimes is conducting a multi-year, multi-million-dollar campaign aimed at reducing the growing rate of premature births through research and awareness.

"Our goal was to create a test that could more accurately predict which pregnancies with preterm labor are at risk for fetal complications from intrauterine inflammation/infection," said Catalin S. Buhimschi, M.D., of Yale University, the lead study author and SMFM member. "We found that profiling the proteins in amniotic fluid for markers of inflammation--a proteomic profile--not only yielded results twice as fast as other tests, but those results were also much more accurate. We discovered that the presence of fewer than two biomarkers for inflammation meant the median time for delivery was five to six days. If all the biomarkers for inflammation were present, delivery time was within hours."

"Research such as this is vital if we are to understand the basic mechanisms underlying preterm birth and find ways to prevent or treat it," said Nancy S. Green, M.D., medical director of the March of Dimes. "Dr. Buhimschi’s work is exciting because it offers a potential new tool to identify women who are at highest risk for a preterm delivery. For these women, knowing their risk and managing it may lead to dramatic improvements in the health of their babies."

Each of the 135 study participants had presented at a hospital with premature labor symptoms and underwent a routine amniocentesis to determine the maturity of the fetus’s lungs. A small sample of the amniotic fluid was also immediately analyzed by screening and diagnostic tests--glucose, neutrophil (white blood cell) count , lactate dehydrogenase (LDH), Gram stain, culture, IL-6 and MMP-8--and a "fingerprint" of the proteins was generated using SELDI-TOF (surface-enhanced laser desorption ionization time-of flight). Peaks were sought for four proteins that served as evidence of inflammation.

Results revealed that the proteomic profiling was more accurate, yielding results in 30 minutes and catching subtle inflammation missed by other tests such as the neutrophil count, Gram stain or culture.

The study, "Detection of Intra-amniotic Inflammation/Infection by Proteomic Profiling. Prospective Comparison with Rapid Diagnostic Tests (Glucose, WBC, LDH, Gram Stain,) IL-6 AND MMP-8," is the first to compare prospectively the traditional tests with the new proteomic profile using fresh amniotic fluid and is a joint effort by maternal-fetal medicine specialists from Yale University and the University of Kansas School of Medicine.

Proteomics is a novel technology that has found applications in various fields including cancer screening. Its potential for improving management of pregnancy complications also appears to be very promising.

Sanda Pecina | EurekAlert!
Further information:
http://www.smfm.org
http://www.nacersano.org
http://www.marchofdimes.com

More articles from Materials Sciences:

nachricht Polymer-graphene nanocarpets to electrify smart fabrics
18.04.2018 | Tomsk Polytechnic University

nachricht New capabilities at NSLS-II set to advance materials science
18.04.2018 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Improved stability of plastic light-emitting diodes

19.04.2018 | Power and Electrical Engineering

Enduring cold temperatures alters fat cell epigenetics

19.04.2018 | Life Sciences

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>