Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Profiling amniotic fluid yields faster test for infection and preterm birth risk, researchers find

03.02.2006


Paper receives March of Dimes award



Researchers at the 26th Annual Society for Maternal-Fetal Medicine (SMFM) meeting today announced that profiling certain proteins in amniotic fluid is the fastest and most accurate way to detect potentially dangerous infections in pregnant women, and also can accurately predict whether premature delivery is imminent.

Diagnosing intra-amniotic inflammation or infection is crucial because these conditions can lead to the death of the fetus or other serious consequences of preterm birth, including brain damage, lung and bowel injury.


The study’s authors were recognized by an award from the March of Dimes, marking the third year that the organization has honored SMFM members for cutting-edge prematurity research. The March of Dimes is conducting a multi-year, multi-million-dollar campaign aimed at reducing the growing rate of premature births through research and awareness.

"Our goal was to create a test that could more accurately predict which pregnancies with preterm labor are at risk for fetal complications from intrauterine inflammation/infection," said Catalin S. Buhimschi, M.D., of Yale University, the lead study author and SMFM member. "We found that profiling the proteins in amniotic fluid for markers of inflammation--a proteomic profile--not only yielded results twice as fast as other tests, but those results were also much more accurate. We discovered that the presence of fewer than two biomarkers for inflammation meant the median time for delivery was five to six days. If all the biomarkers for inflammation were present, delivery time was within hours."

"Research such as this is vital if we are to understand the basic mechanisms underlying preterm birth and find ways to prevent or treat it," said Nancy S. Green, M.D., medical director of the March of Dimes. "Dr. Buhimschi’s work is exciting because it offers a potential new tool to identify women who are at highest risk for a preterm delivery. For these women, knowing their risk and managing it may lead to dramatic improvements in the health of their babies."

Each of the 135 study participants had presented at a hospital with premature labor symptoms and underwent a routine amniocentesis to determine the maturity of the fetus’s lungs. A small sample of the amniotic fluid was also immediately analyzed by screening and diagnostic tests--glucose, neutrophil (white blood cell) count , lactate dehydrogenase (LDH), Gram stain, culture, IL-6 and MMP-8--and a "fingerprint" of the proteins was generated using SELDI-TOF (surface-enhanced laser desorption ionization time-of flight). Peaks were sought for four proteins that served as evidence of inflammation.

Results revealed that the proteomic profiling was more accurate, yielding results in 30 minutes and catching subtle inflammation missed by other tests such as the neutrophil count, Gram stain or culture.

The study, "Detection of Intra-amniotic Inflammation/Infection by Proteomic Profiling. Prospective Comparison with Rapid Diagnostic Tests (Glucose, WBC, LDH, Gram Stain,) IL-6 AND MMP-8," is the first to compare prospectively the traditional tests with the new proteomic profile using fresh amniotic fluid and is a joint effort by maternal-fetal medicine specialists from Yale University and the University of Kansas School of Medicine.

Proteomics is a novel technology that has found applications in various fields including cancer screening. Its potential for improving management of pregnancy complications also appears to be very promising.

Sanda Pecina | EurekAlert!
Further information:
http://www.smfm.org
http://www.nacersano.org
http://www.marchofdimes.com

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>