Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Changing thermal conductivity to improve the performance of silicon nitride components

18.01.2006


Enhancing the thermal conductivity of â-Si 3N 4 ceramics



Silicon nitride ceramics are important engineering materials due to their excellent properties such as fracture toughness, wear resistance and high temperature strength. They were originally developed to compete with metallic parts and now find application in such areas as engine components, glow plugs for diesel engines, cutting tools, bearings, nozzles and kiln furniture.

Thermal conductivity is an important physical property of Si 3N 4 ceramics. As the thermal conductivity strongly influences the rate of heat dissipation, this determines the reliability and performance of components in many industrial applications. In vehicle engines, low thermal conductivity is desired for heat insulation components to decrease fuel consumption, while high conductivity is required for cooling components with good thermal shock resistance.


Thermal conductivities of â-Si 3N 4 ceramics are known to range from 10 to 162 W.m -1.K -1 at room temperature. The thermal conductivity is greatly affected by processing variables such as purity of raw powders, type and amount of sintering aids, forming and sintering conditions.

In this paper published in AZojomo*, Koji Watari, Kiyoshi Hirao, Manuel E. Brito, Motohiro Toriyama and Kozo Ishizaki from National Institute of Advanced Industrial Science and Technology and Nagaoka University of Technology , have reviewed previous works and summarized results of the thermal conductivity of â-Si 3N 4 ceramics obtained under various conditions

The experimental observations and theoretical calculations showed that the amount and type of crystal defects in grains as well as thermal anisotropy are significant factors influencing the thermal conductivity of â-Si 3N 4 ceramics. Removal of crystal defects in grains is an important factor in increasing thermal conductivity of â-Si 3N 4 ceramics. This is achieved by using high purity powders, selection of effective sintering aids and controlling grain growth. Increasing thermal anisotropy in â-Si 3N 4 ceramics is also achieved by grain orientation during forming. By combining these processing techniques, it is possible to produces â-Si 3N 4 ceramics with higher thermal conductivities than 150 W.m -1.K -1 at room temperature.

Dr. Ian Birkby | EurekAlert!
Further information:
http://www.azom.com/Details.asp?ArticleID=3173
http://www.azom.com/azojomo.asp

More articles from Materials Sciences:

nachricht High-tech sensing illuminates concrete stress testing
20.07.2017 | University of Leeds

nachricht Here's a tip: Indented cement shows unique properties
20.07.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>