Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The ESRF tests the hardest and least compressive material in the world

13.09.2005


Nanorods of many materials are proving very successful, and their properties often exceed that of nanotubes, making them excellent candidates for industrial applications. Theoretical calculations predicted that diamond nanorods too would have properties superior to that of carbon nanotubes. But, so far, nobody had been able to actually synthesize diamond nanorods. This is no longer true. A team from the Bayerisches Geoinstitut (Universität Bayreuth) has just reported the synthesis of these aggregated diamond nanorods (ADNR) and their remarkable properties, after having measured them at the ESRF.



The Bayreuth team tested the compressibility and density of this new material. Experiments conducted at the ESRF on the High-Pressure beamline confirmed that the X-ray density of the ADNR material is higher than that of diamond by 0.2 –0.4%; thus making it the densest form of carbon. Subsequent experiments, carried out by loading a diamond anvil cell with both single crystal diamond and ADNR material, in order to directly compare their behaviour under static load, identifies that ADNR is also 11% less compressible than diamond.

The combination of the hardness of the ADNR and its chemical stability makes it a potentially excellent material for machining ferrous materials. "The fact that diamond nanorods are very dense and non-compressible has not only strengthened theoretical predictions, but also given a positive sign that they have very interesting unique properties", explains Leonid Dubrovinsky, one of the authors of the paper.


At the ESRF, researchers tested the "Vickers microhardness", using a diamond indenter. They showed directly that the probe tip failed to make an indentation on the surface of the ADNR. Moreover ADNR can scratch (111) faces of type-IIa natural diamonds, thus ADNR is harder than natural diamond and consequently more resistant against abrasion. The random arrangement of the nanorods most probably gives rise to the increased hardness of ADNR and the reduction in C-C bond length in outer layers of nanorods gives rise to the increased density.

Mechanical testing has also shown that under the same conditions, due to the increased resistance against graphitisation, ADNR material is a much more effective grinding piece than synthetic or natural diamond. This makes it a potentially valuable material in machining ferrous metals and ceramics and, due to its nanocrystalline nature, for precision machining and polishing.

The invention of the team (Natalia Dubrovinskaia, Leonid Dubrovinsky, and Falko Langenhorst) describing the method of synthesis of superhard, wear resistant, and thermally stable aggregated diamond nanorods and their applications has been patented.

Montserrat Capellas | EurekAlert!
Further information:
http://www.esrf.fr

More articles from Materials Sciences:

nachricht Magnesium magnificent for plasmonic applications
23.05.2018 | Rice University

nachricht New concept for structural colors
18.05.2018 | Technische Universität Hamburg-Harburg

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>