Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The ESRF tests the hardest and least compressive material in the world

13.09.2005


Nanorods of many materials are proving very successful, and their properties often exceed that of nanotubes, making them excellent candidates for industrial applications. Theoretical calculations predicted that diamond nanorods too would have properties superior to that of carbon nanotubes. But, so far, nobody had been able to actually synthesize diamond nanorods. This is no longer true. A team from the Bayerisches Geoinstitut (Universität Bayreuth) has just reported the synthesis of these aggregated diamond nanorods (ADNR) and their remarkable properties, after having measured them at the ESRF.



The Bayreuth team tested the compressibility and density of this new material. Experiments conducted at the ESRF on the High-Pressure beamline confirmed that the X-ray density of the ADNR material is higher than that of diamond by 0.2 –0.4%; thus making it the densest form of carbon. Subsequent experiments, carried out by loading a diamond anvil cell with both single crystal diamond and ADNR material, in order to directly compare their behaviour under static load, identifies that ADNR is also 11% less compressible than diamond.

The combination of the hardness of the ADNR and its chemical stability makes it a potentially excellent material for machining ferrous materials. "The fact that diamond nanorods are very dense and non-compressible has not only strengthened theoretical predictions, but also given a positive sign that they have very interesting unique properties", explains Leonid Dubrovinsky, one of the authors of the paper.


At the ESRF, researchers tested the "Vickers microhardness", using a diamond indenter. They showed directly that the probe tip failed to make an indentation on the surface of the ADNR. Moreover ADNR can scratch (111) faces of type-IIa natural diamonds, thus ADNR is harder than natural diamond and consequently more resistant against abrasion. The random arrangement of the nanorods most probably gives rise to the increased hardness of ADNR and the reduction in C-C bond length in outer layers of nanorods gives rise to the increased density.

Mechanical testing has also shown that under the same conditions, due to the increased resistance against graphitisation, ADNR material is a much more effective grinding piece than synthetic or natural diamond. This makes it a potentially valuable material in machining ferrous metals and ceramics and, due to its nanocrystalline nature, for precision machining and polishing.

The invention of the team (Natalia Dubrovinskaia, Leonid Dubrovinsky, and Falko Langenhorst) describing the method of synthesis of superhard, wear resistant, and thermally stable aggregated diamond nanorods and their applications has been patented.

Montserrat Capellas | EurekAlert!
Further information:
http://www.esrf.fr

More articles from Materials Sciences:

nachricht Melting solid below the freezing point
23.01.2017 | Carnegie Institution for Science

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>