Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The ESRF tests the hardest and least compressive material in the world

13.09.2005


Nanorods of many materials are proving very successful, and their properties often exceed that of nanotubes, making them excellent candidates for industrial applications. Theoretical calculations predicted that diamond nanorods too would have properties superior to that of carbon nanotubes. But, so far, nobody had been able to actually synthesize diamond nanorods. This is no longer true. A team from the Bayerisches Geoinstitut (Universität Bayreuth) has just reported the synthesis of these aggregated diamond nanorods (ADNR) and their remarkable properties, after having measured them at the ESRF.



The Bayreuth team tested the compressibility and density of this new material. Experiments conducted at the ESRF on the High-Pressure beamline confirmed that the X-ray density of the ADNR material is higher than that of diamond by 0.2 –0.4%; thus making it the densest form of carbon. Subsequent experiments, carried out by loading a diamond anvil cell with both single crystal diamond and ADNR material, in order to directly compare their behaviour under static load, identifies that ADNR is also 11% less compressible than diamond.

The combination of the hardness of the ADNR and its chemical stability makes it a potentially excellent material for machining ferrous materials. "The fact that diamond nanorods are very dense and non-compressible has not only strengthened theoretical predictions, but also given a positive sign that they have very interesting unique properties", explains Leonid Dubrovinsky, one of the authors of the paper.


At the ESRF, researchers tested the "Vickers microhardness", using a diamond indenter. They showed directly that the probe tip failed to make an indentation on the surface of the ADNR. Moreover ADNR can scratch (111) faces of type-IIa natural diamonds, thus ADNR is harder than natural diamond and consequently more resistant against abrasion. The random arrangement of the nanorods most probably gives rise to the increased hardness of ADNR and the reduction in C-C bond length in outer layers of nanorods gives rise to the increased density.

Mechanical testing has also shown that under the same conditions, due to the increased resistance against graphitisation, ADNR material is a much more effective grinding piece than synthetic or natural diamond. This makes it a potentially valuable material in machining ferrous metals and ceramics and, due to its nanocrystalline nature, for precision machining and polishing.

The invention of the team (Natalia Dubrovinskaia, Leonid Dubrovinsky, and Falko Langenhorst) describing the method of synthesis of superhard, wear resistant, and thermally stable aggregated diamond nanorods and their applications has been patented.

Montserrat Capellas | EurekAlert!
Further information:
http://www.esrf.fr

More articles from Materials Sciences:

nachricht The stacked colour sensor
16.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures
16.11.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>