Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanocoating could eliminate foggy windows and lenses

30.08.2005


Foggy windows and lenses are a nuisance, and in the case of automobile windows, can pose a driving hazard. Now, a group of scientists at the Massachusetts Institute of Technology (MIT) may have found a permanent solution to the problem. The team has developed a unique polymer coating — made of silica nanoparticles — that they say can create surfaces that never fog.

The transparent coating can be applied to eyeglasses, camera lenses, ski goggles … even bathroom mirrors, they say. The new coating was described today at the 230th national meeting of the American Chemical Society, the world’s largest scientific society.

Researchers have been developing anti-fog technology for years, but each approach has its drawbacks. Some stores carry special anti-fog sprays that help reduce fogging on the inside of car windows, but the sprays must be constantly reapplied to remain effective. Glass containing titanium dioxide also shows promise for reduced fogging, but the method only works in the presence of ultraviolet (UV) light, researchers say.



"Our coatings have the potential to provide the first permanent solution to the fogging problem," says study leader Michael Rubner, Ph.D., a materials science researcher at MIT in Cambridge, Mass. "They remain stable over long periods, don’t require light to be activated and can be applied to virtually any surface." Coated glass appears clearer and allows more light to pass through than untreated glass while maintaining the same smooth texture, he says.

The coatings consist of alternating layers of silica nanoparticles, which are basically tiny particles of glass, and a polymer called polyallylamine hydrochloride, both of which are relatively cheap to manufacture, Rubner says. He has applied for a patent on the manufacturing process and says that the coating could be available in consumer products in two to five years. The military and at least two major car manufacturers have already expressed interest in using the technology, he says.

When fogging occurs, thousands of tiny water droplets condense on glass and other surfaces. The droplets scatter light in random patterns, causing the surfaces to become translucent or foggy. This often occurs when a cold surface suddenly comes into contact with warm, moist air.

The new coating prevents this process from occurring, primarily through its super-hydrophilic, or water-loving, nature, Rubner says. The nanoparticles in the coating strongly attract the water droplets and force them to form much smaller contact angles with the surface. As a result, the droplets flatten and merge into a uniform, transparent sheet rather than forming countless individual light-scattering spheres. "The coating basically causes water that hits the surfaces to develop a sustained sheeting effect, and that prevents fogging," Rubner says.

The same coatings also can be engineered to have superior anti-reflective properties that reduce glare and maximize the amount of light passing through, an effect that shows promise for improving materials used in greenhouses and solar cell panels, the researcher says. So far, the coating is more durable on glass than plastic surfaces, but Rubner and his associates are currently working on processes to optimize the effectiveness of the coating for all surfaces. More testing is needed, they say.

Funding for this study was provided by the Defense Advanced Research Projects Agency (DARPA) and the National Science Foundation (via the Materials Research Science and Engineering Centers, or MSREC).

The American Chemical Society is a nonprofit organization, chartered by the U.S. Congress, with a multidisciplinary membership of more than 158,000 chemists and chemical engineers. It publishes numerous scientific journals and databases, convenes major research conferences and provides educational, science policy and career programs in chemistry. Its main offices are in Washington, D.C., and Columbus, Ohio.

Charmayne Marsh | EurekAlert!
Further information:
http://www.acs.org

More articles from Materials Sciences:

nachricht The stacked colour sensor
16.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures
16.11.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>