Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nanocoating could eliminate foggy windows and lenses


Foggy windows and lenses are a nuisance, and in the case of automobile windows, can pose a driving hazard. Now, a group of scientists at the Massachusetts Institute of Technology (MIT) may have found a permanent solution to the problem. The team has developed a unique polymer coating — made of silica nanoparticles — that they say can create surfaces that never fog.

The transparent coating can be applied to eyeglasses, camera lenses, ski goggles … even bathroom mirrors, they say. The new coating was described today at the 230th national meeting of the American Chemical Society, the world’s largest scientific society.

Researchers have been developing anti-fog technology for years, but each approach has its drawbacks. Some stores carry special anti-fog sprays that help reduce fogging on the inside of car windows, but the sprays must be constantly reapplied to remain effective. Glass containing titanium dioxide also shows promise for reduced fogging, but the method only works in the presence of ultraviolet (UV) light, researchers say.

"Our coatings have the potential to provide the first permanent solution to the fogging problem," says study leader Michael Rubner, Ph.D., a materials science researcher at MIT in Cambridge, Mass. "They remain stable over long periods, don’t require light to be activated and can be applied to virtually any surface." Coated glass appears clearer and allows more light to pass through than untreated glass while maintaining the same smooth texture, he says.

The coatings consist of alternating layers of silica nanoparticles, which are basically tiny particles of glass, and a polymer called polyallylamine hydrochloride, both of which are relatively cheap to manufacture, Rubner says. He has applied for a patent on the manufacturing process and says that the coating could be available in consumer products in two to five years. The military and at least two major car manufacturers have already expressed interest in using the technology, he says.

When fogging occurs, thousands of tiny water droplets condense on glass and other surfaces. The droplets scatter light in random patterns, causing the surfaces to become translucent or foggy. This often occurs when a cold surface suddenly comes into contact with warm, moist air.

The new coating prevents this process from occurring, primarily through its super-hydrophilic, or water-loving, nature, Rubner says. The nanoparticles in the coating strongly attract the water droplets and force them to form much smaller contact angles with the surface. As a result, the droplets flatten and merge into a uniform, transparent sheet rather than forming countless individual light-scattering spheres. "The coating basically causes water that hits the surfaces to develop a sustained sheeting effect, and that prevents fogging," Rubner says.

The same coatings also can be engineered to have superior anti-reflective properties that reduce glare and maximize the amount of light passing through, an effect that shows promise for improving materials used in greenhouses and solar cell panels, the researcher says. So far, the coating is more durable on glass than plastic surfaces, but Rubner and his associates are currently working on processes to optimize the effectiveness of the coating for all surfaces. More testing is needed, they say.

Funding for this study was provided by the Defense Advanced Research Projects Agency (DARPA) and the National Science Foundation (via the Materials Research Science and Engineering Centers, or MSREC).

The American Chemical Society is a nonprofit organization, chartered by the U.S. Congress, with a multidisciplinary membership of more than 158,000 chemists and chemical engineers. It publishes numerous scientific journals and databases, convenes major research conferences and provides educational, science policy and career programs in chemistry. Its main offices are in Washington, D.C., and Columbus, Ohio.

Charmayne Marsh | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>