Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotubes inspire new technique for healing broken bones

08.07.2005


Scientists have shown for the first time that carbon nanotubes make an ideal scaffold for the growth of bone tissue. The new technique could change the way doctors treat broken bones, allowing them to simply inject a solution of nanotubes into a fracture to promote healing.



The report appears in the June 14 issue of the American Chemical Society’s journal Chemistry of Materials. ACS is the world’s largest scientific society.

The success of a bone graft depends on the ability of the scaffold to assist the natural healing process. Artificial bone scaffolds have been made from a wide variety of materials, such as polymers or peptide fibers, but they have a number of drawbacks, including low strength and the potential for rejection in the body.


"Compared with these scaffolds, the high mechanical strength, excellent flexibility and low density of carbon nanotubes make them ideal for the production of lightweight, high-strength materials such as bone," says Robert Haddon, Ph.D., a chemist at the University of California, Riverside, and lead author of the paper. Single-walled carbon nanotubes are a naturally occurring form of carbon, like graphite or diamond, where the atoms are arranged like a rolled-up tube of chicken wire. They are among the strongest known materials in the world.

Bone tissue is a natural composite of collagen fibers and hydroxyapatite crystals. Haddon and his coworkers have demonstrated for the first time that nanotubes can mimic the role of collagen as the scaffold for growth of hydroxyapatite in bone.

"This research is particularly notable in the sense that it points the way to a possible new direction for carbon nanotube applications, in the medical treatment of broken bones," says Leonard Interrante, Ph.D., editor of Chemistry of Materials and a professor in the department of chemistry and chemical biology at Rensselaer Polytechnic Institute in Troy, N.Y. "This type of research is an example of how chemistry is being used everyday, world-wide, to develop materials that will improve peoples’ lives."

The researchers expect that nanotubes will improve the strength and flexibility of artificial bone materials, leading to a new type of bone graft for fractures that may also be important in the treatment of bone-thinning diseases such as osteoporosis.

In a typical bone graft, bone or synthetic material is shaped by the surgeon to fit the affected area, according to Haddon. Pins or screws then hold the healthy bone to the implanted material. Grafts provide a framework for bones to regenerate and heal, allowing bone cells to weave into the porous structure of the implant, which supports the new tissue as it grows to connect fractured bone segments.

The new technique may someday give doctors the ability to inject a solution of nanotubes into a bone fracture, and then wait for the new tissue to grow and heal.

Simple single-walled carbon nanotubes are not sufficient, since the growth of hydroxyapatite crystals relies on the ability of the scaffold to attract calcium ions and initiate the crystallization process. So the researchers carefully designed nanotubes with several chemical groups attached. Some of these groups assist the growth and orientation of hydroxyapatite crystals, allowing the researchers a degree of control over their alignment, while other groups improve the biocompatibility of nanotubes by increasing their solubility in water.

"Researchers today are realizing that mechanical mimicry of any material alone cannot succeed in duplicating the intricacies of the human body," Haddon says. "Interactions of these artificial materials with the systems of the human body are very important factors in determining clinical use."

The research is still in the early stages, but Haddon says he is encouraged by the results. Before proceeding to clinical trials, Haddon plans to investigate the toxicology of these materials and to measure their mechanical strength and flexibility in relation to commercially available bone mimics.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>