Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved dielectric developed for chip-level copper circuitry

30.03.2005


A new dielectric material, developed by researchers at the University of Illinois at Urbana-Champaign, could facilitate the use of copper circuitry at the chip level. The thermally stable aromatic polymer has a low dielectric constant of 1.85, good mechanical properties and excellent adhesion.



Replacing aluminum with copper as the multilayer interconnect structure in microelectronic devices could enhance both miniaturization and performance. Copper offers much higher electrical and thermal conductivity than aluminum. Placing narrow copper lines close together, however, requires a good dielectric to reduce cross talk between wires. Unfortunately, existing dielectric insulators can’t withstand the rigors of the aggressive chemical-mechanical polishing step used to produce a smooth copper surface.

"We developed an aromatic thermosetting polymer for use as an insulating material in copper chip technology," said James Economy, a professor of materials science and engineering at Illinois. "The material has a high thermal stability, low moisture pick-up and can withstand chemical-mechanical polishing."


The material that Economy and former graduate student Youngqing Huang (now at DuPont) started with had a dielectric constant of 2.7. By adding porogens -- materials that leave tiny holes when they evaporate -- the researchers lowered the dielectric constant to 1.85, while maintaining an acceptably high level of hardness and stiffness.

"The pores are closed and about 5 nanometers in size," Economy said. "They are formed when heat is applied to low molecular weight porogens dispersed through the film. The porogens break down into small gas molecules that can diffuse through the polymer structure. The resulting microporosity does not significantly reduce the mechanical integrity of the foamed material."

The new dielectric can withstand temperatures up to 400 degrees Celsius, is easily applied in solution phase to form a submicron thin film, and adheres to substrates better than other candidate materials.

"We feel we have identified the critical problems confronting the development of a dielectric material to facilitate the use of copper chip interconnections," Economy said, "and we have solved every one of them."

Huang will describe the new material at the spring meeting of the Materials Research Society, to be held in San Francisco, March 28 through April 1. The researchers have applied for a patent.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>