Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved dielectric developed for chip-level copper circuitry

30.03.2005


A new dielectric material, developed by researchers at the University of Illinois at Urbana-Champaign, could facilitate the use of copper circuitry at the chip level. The thermally stable aromatic polymer has a low dielectric constant of 1.85, good mechanical properties and excellent adhesion.



Replacing aluminum with copper as the multilayer interconnect structure in microelectronic devices could enhance both miniaturization and performance. Copper offers much higher electrical and thermal conductivity than aluminum. Placing narrow copper lines close together, however, requires a good dielectric to reduce cross talk between wires. Unfortunately, existing dielectric insulators can’t withstand the rigors of the aggressive chemical-mechanical polishing step used to produce a smooth copper surface.

"We developed an aromatic thermosetting polymer for use as an insulating material in copper chip technology," said James Economy, a professor of materials science and engineering at Illinois. "The material has a high thermal stability, low moisture pick-up and can withstand chemical-mechanical polishing."


The material that Economy and former graduate student Youngqing Huang (now at DuPont) started with had a dielectric constant of 2.7. By adding porogens -- materials that leave tiny holes when they evaporate -- the researchers lowered the dielectric constant to 1.85, while maintaining an acceptably high level of hardness and stiffness.

"The pores are closed and about 5 nanometers in size," Economy said. "They are formed when heat is applied to low molecular weight porogens dispersed through the film. The porogens break down into small gas molecules that can diffuse through the polymer structure. The resulting microporosity does not significantly reduce the mechanical integrity of the foamed material."

The new dielectric can withstand temperatures up to 400 degrees Celsius, is easily applied in solution phase to form a submicron thin film, and adheres to substrates better than other candidate materials.

"We feel we have identified the critical problems confronting the development of a dielectric material to facilitate the use of copper chip interconnections," Economy said, "and we have solved every one of them."

Huang will describe the new material at the spring meeting of the Materials Research Society, to be held in San Francisco, March 28 through April 1. The researchers have applied for a patent.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Materials Sciences:

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>