Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists Find Atomic Clues to Tougher Ceramics


Advanced ceramics are wonderful materials – they withstand temperatures that would melt steel and resist most corrosive chemicals. If only they weren’t so brittle. Poor resistance to fracture damage has been the major drawback to the widespread use of advanced ceramics as structural materials. Help, however, may be on the way.

A collaboration of scientists led by researchers with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) has uncovered clues at the atomic level that could lead to a new generation of much tougher advanced ceramics to be used in applications like gas turbine engines.

Working with the unique facilities at Berkeley Lab’s National Center for Electron Microscopy (NCEM), the collaboration has produced atomic-resolution images of silicon nitride ceramics that were sintered with oxides of rare earth elements to toughen them up and prevent cracks from spreading. These images revealed, for the first time, the exact location of each rare-earth atom in the final material and how their presence affected its toughness.

"Our findings are a prime factor in understanding the origin of the mechanical properties in advanced ceramics and should make it possible to do the precise tailoring in the future that will critically improve the performances of these materials over a wide range of applications," says Robert Ritchie, a materials scientist who holds a joint appointment with Berkeley Lab’s Materials Sciences Division and the University of California at Berkeley’s Department of Materials Science and Engineering.

Ritchie and Alexander Ziegler, a member of Ritchie’s research group, were the principal authors of a paper by the collaboration which appears in the December 3 issue of the journal Science. The other co-authors were Christian Kisielowski and Nigel Browning of Berkeley Lab, Juan Idrobo of UC Davis, and Michael Cinibulk of the Air Force Research Laboratory in Ohio.

Ceramics are probably the oldest construction materials known, their use dating back thousands of years, when they were made from wet clay and baked at high temperatures until hard. Today’s advanced ceramics are made from powders of complex chemical compounds and their production requires careful control at every stage of the process.

Much attention is currently being focused on silicon nitride advanced ceramics, which are considered to be leading candidates as structural materials for future gas turbine engines. These engines, which are projected for use in electrical power plants, among other applications, will burn fuel at temperatures of around 1,200 degrees Celsius (2,192 degrees Fahrenheit), well beyond the tolerance of metals, even nickel-base super-alloys. Running at such high temperatures, the advanced gas turbines are expected to achieve a much higher thermal-to-electricity efficiency than today’s steam-driven electrical power plants, while emitting far less greenhouse gases. For this to happen, however, the brittleness problem of the silicon nitride ceramics must be solved.

Says Ziegler, "To enhance the toughness of a silicon nitride ceramic, it is often necessary to engineer a thin (nanoscale) film in the ceramic’s grain boundaries, which cracks when the ceramic begins to fracture. This promotes the formation of grain bridges which span across the crack, making it more difficult for the crack to propagate."

Understanding the nature and properties of these nano-sized intergranular films is crucial to enhancing ceramic toughness, according to Ritchie and Ziegler. However, critical information about the chemical composition, atomic structure and bonding characteristics of such films has long been missing. "The problem was the nanometer dimensions of the intergranular films," Ziegler says. "To gain information on the local atomic structure and bonding characteristics requires characterization at Ångstrøm (single-atom) to sub-Ångstrøm scales. Until recently, no microscopes or chemical analysis probes have been able to resolve such information at these length scales."

NCEM, however, houses a Scanning Transmission Electron Microscope (STEM) which is optimized for materials applications that require the highest resolutions for both imaging and spectroscopy. With the help of NCEM staff members Kisielowski and Browning, Ritchie, Ziegler and the collaboration used this microscope, in combination with an imaging technique called "high-angle annular dark-field STEM," and a chemical analysis technique, called electron-energy-loss-spectroscopy (EELS), to examine a silicon nitride ceramic doped with several different rare-earth elements. They specifically looked at how the atomic bonding configuration of the intergranular phase changed with a change in the rare earth sintering additive.

"We were able to determine the exact location of each rare-earth atom and to see how these atoms specifically bonded to the interface between the intergranular phase and the matrix grains of the ceramic," Ritchie says. "We saw that each rare-earth element attaches to the interface differently, depending on its atomic size, electronic configuration, and the presence of oxygen atoms along the interface. This information can be related to the fracture toughness of the ceramic, which means we should be able to atomistically tailor the grain boundaries in future ceramics to give optimum mechanical properties."

The collaboration says that its results with the silicon nitride ceramic and the rare earth glassy films should be applicable to other types of advanced ceramics as well.

Says Ritchie, "It’s interesting, but intergranular glassy films used to be thought of as an undesirable feature in ceramics, much like inclusions in steels. We now realize they are the key feature that promotes ceramic toughness."

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.

Lynn Yarris | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>