Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Find Atomic Clues to Tougher Ceramics

10.12.2004


Advanced ceramics are wonderful materials – they withstand temperatures that would melt steel and resist most corrosive chemicals. If only they weren’t so brittle. Poor resistance to fracture damage has been the major drawback to the widespread use of advanced ceramics as structural materials. Help, however, may be on the way.



A collaboration of scientists led by researchers with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) has uncovered clues at the atomic level that could lead to a new generation of much tougher advanced ceramics to be used in applications like gas turbine engines.

Working with the unique facilities at Berkeley Lab’s National Center for Electron Microscopy (NCEM), the collaboration has produced atomic-resolution images of silicon nitride ceramics that were sintered with oxides of rare earth elements to toughen them up and prevent cracks from spreading. These images revealed, for the first time, the exact location of each rare-earth atom in the final material and how their presence affected its toughness.


"Our findings are a prime factor in understanding the origin of the mechanical properties in advanced ceramics and should make it possible to do the precise tailoring in the future that will critically improve the performances of these materials over a wide range of applications," says Robert Ritchie, a materials scientist who holds a joint appointment with Berkeley Lab’s Materials Sciences Division and the University of California at Berkeley’s Department of Materials Science and Engineering.

Ritchie and Alexander Ziegler, a member of Ritchie’s research group, were the principal authors of a paper by the collaboration which appears in the December 3 issue of the journal Science. The other co-authors were Christian Kisielowski and Nigel Browning of Berkeley Lab, Juan Idrobo of UC Davis, and Michael Cinibulk of the Air Force Research Laboratory in Ohio.

Ceramics are probably the oldest construction materials known, their use dating back thousands of years, when they were made from wet clay and baked at high temperatures until hard. Today’s advanced ceramics are made from powders of complex chemical compounds and their production requires careful control at every stage of the process.

Much attention is currently being focused on silicon nitride advanced ceramics, which are considered to be leading candidates as structural materials for future gas turbine engines. These engines, which are projected for use in electrical power plants, among other applications, will burn fuel at temperatures of around 1,200 degrees Celsius (2,192 degrees Fahrenheit), well beyond the tolerance of metals, even nickel-base super-alloys. Running at such high temperatures, the advanced gas turbines are expected to achieve a much higher thermal-to-electricity efficiency than today’s steam-driven electrical power plants, while emitting far less greenhouse gases. For this to happen, however, the brittleness problem of the silicon nitride ceramics must be solved.

Says Ziegler, "To enhance the toughness of a silicon nitride ceramic, it is often necessary to engineer a thin (nanoscale) film in the ceramic’s grain boundaries, which cracks when the ceramic begins to fracture. This promotes the formation of grain bridges which span across the crack, making it more difficult for the crack to propagate."

Understanding the nature and properties of these nano-sized intergranular films is crucial to enhancing ceramic toughness, according to Ritchie and Ziegler. However, critical information about the chemical composition, atomic structure and bonding characteristics of such films has long been missing. "The problem was the nanometer dimensions of the intergranular films," Ziegler says. "To gain information on the local atomic structure and bonding characteristics requires characterization at Ångstrøm (single-atom) to sub-Ångstrøm scales. Until recently, no microscopes or chemical analysis probes have been able to resolve such information at these length scales."

NCEM, however, houses a Scanning Transmission Electron Microscope (STEM) which is optimized for materials applications that require the highest resolutions for both imaging and spectroscopy. With the help of NCEM staff members Kisielowski and Browning, Ritchie, Ziegler and the collaboration used this microscope, in combination with an imaging technique called "high-angle annular dark-field STEM," and a chemical analysis technique, called electron-energy-loss-spectroscopy (EELS), to examine a silicon nitride ceramic doped with several different rare-earth elements. They specifically looked at how the atomic bonding configuration of the intergranular phase changed with a change in the rare earth sintering additive.

"We were able to determine the exact location of each rare-earth atom and to see how these atoms specifically bonded to the interface between the intergranular phase and the matrix grains of the ceramic," Ritchie says. "We saw that each rare-earth element attaches to the interface differently, depending on its atomic size, electronic configuration, and the presence of oxygen atoms along the interface. This information can be related to the fracture toughness of the ceramic, which means we should be able to atomistically tailor the grain boundaries in future ceramics to give optimum mechanical properties."

The collaboration says that its results with the silicon nitride ceramic and the rare earth glassy films should be applicable to other types of advanced ceramics as well.

Says Ritchie, "It’s interesting, but intergranular glassy films used to be thought of as an undesirable feature in ceramics, much like inclusions in steels. We now realize they are the key feature that promotes ceramic toughness."

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Materials Sciences:

nachricht Researchers printed graphene-like materials with inkjet
18.08.2017 | Aalto University

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>