Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants Provide Model for New Shape-changing Materials

29.09.2004


Over the next 17 months, Virginia Tech will lead a team of researchers exploring the development of a new class of materials that will use plant protein structures in an attempt to mimic biological systems. The Defense Science Office of the Defense Advanced Research Project Agency (DARPA) is funding the $2.1 million project.



DARPA is specifically interested in a group of hard polymers called nastic materials. In biology, nastic refers to the natural movement of plants in response to changes in their environment, such as plants that track the sunlight or that stiffen when watered. These movements are caused by changes in the water pressure inside the plant and can result in very large changes in shape. The goal of the DARPA project, administered by John Main, is to develop synthetic materials that utilize internal pressure changes to cause large shape changes.

The plan calls for the investigation of the protein structures of plants for the purpose of understanding their role in generating shape changes in natural materials. The protein structures under analysis would then be used to develop a synthetic material that incorporates properties that produce controllable shapes.


Ultimately, successful development of the nastic structure concept will provide a new class of materials based on the direct conversion of biochemical energy into mechanical work. In this manner it will provide a truly integrated "smart" material that serves as the foundation for a new generation of biologically inspired engineering systems.

In this unique program, researchers will be working with a company on the application of nastic materials to a morphing aircraft wing. This wing would dynamically change its shape and control surfaces during flight. An analogy would be a hawk that is soaring through the sky, suddenly sees its prey, and changes its shape to make a dive towards the intended victim. As the raptor changes gear to fly southward at lightening speed, it must sense what the outside forces and pressures are for its trajectory.

Similarly, for an aircraft wing, engineers would need a material that’s mechanically flexible. But the designers also need a material with a surface that’s controlled by sensors and electrical conductors that allow it to do that sensing and change shape accordingly. Properly engineered nastic materials might allow sensors that can be flexed.

Don Leo, professor of mechanical engineering and a member of the Center for Intelligent Materials Systems and Structures (CIMMS) at Virginia Tech, is the principal investigator on this project. His colleagues are: Dr. John Cuppoletti, College of Medicine, University of Cincinnati; Subhash Narang, SRI International, Palo Alto, Cal.; Jay Kudva, NextGen Aeronautics Inc., Torrance, Cal.; and Victor Giurgiutiu, Department of Mechanical Engineering, University of South Carolina. At Virginia Tech, Leo will be working with Tim Long, professor of chemistry, and Lisa Weiland, currently a research scientist at CIMMS who will soon be joining the University of Pittsburgh’s mechanical engineering department.

This highly interdisciplinary team has expertise in molecular biology, polymer chemistry, structural modeling and control, fabrication methodologies, and systems integration required for this program. “As we generate materials that will feature internal pressures that allow the nastic structures to expand and contract, we hope to move on from the morphing wings to other applications that require structures that can produce large shape changes. An example might be a compact container that will deploy into an antenna after it is transported to a particular location,” Leo said.

“Biological systems are excellent templates for the development of high-performance engineering platforms. An understanding of how biological systems move, adapt, communicate, and replicate are providing scientists and engineers with novel approaches to engineering problems. These solutions are producing a revolution in engineering design through the application of biological principles to the design of new autonomous engineering systems,” Leo said.

Virginia Tech began working in the smart materials area in the 1980s, attempting to engineer materials and systems that reflect nature. CIMMS, directed by Dan Inman, who holds the George Goodson endowed professorship, has an international reputation in the smart materials arena.

| newswise
Further information:
http://www.vt.edu

More articles from Materials Sciences:

nachricht Simple processing technique could cut cost of organic PV and wearable electronics
06.12.2016 | Georgia Institute of Technology

nachricht InLight study: insights into chemical processes using light
05.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>