Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Plants Provide Model for New Shape-changing Materials


Over the next 17 months, Virginia Tech will lead a team of researchers exploring the development of a new class of materials that will use plant protein structures in an attempt to mimic biological systems. The Defense Science Office of the Defense Advanced Research Project Agency (DARPA) is funding the $2.1 million project.

DARPA is specifically interested in a group of hard polymers called nastic materials. In biology, nastic refers to the natural movement of plants in response to changes in their environment, such as plants that track the sunlight or that stiffen when watered. These movements are caused by changes in the water pressure inside the plant and can result in very large changes in shape. The goal of the DARPA project, administered by John Main, is to develop synthetic materials that utilize internal pressure changes to cause large shape changes.

The plan calls for the investigation of the protein structures of plants for the purpose of understanding their role in generating shape changes in natural materials. The protein structures under analysis would then be used to develop a synthetic material that incorporates properties that produce controllable shapes.

Ultimately, successful development of the nastic structure concept will provide a new class of materials based on the direct conversion of biochemical energy into mechanical work. In this manner it will provide a truly integrated "smart" material that serves as the foundation for a new generation of biologically inspired engineering systems.

In this unique program, researchers will be working with a company on the application of nastic materials to a morphing aircraft wing. This wing would dynamically change its shape and control surfaces during flight. An analogy would be a hawk that is soaring through the sky, suddenly sees its prey, and changes its shape to make a dive towards the intended victim. As the raptor changes gear to fly southward at lightening speed, it must sense what the outside forces and pressures are for its trajectory.

Similarly, for an aircraft wing, engineers would need a material that’s mechanically flexible. But the designers also need a material with a surface that’s controlled by sensors and electrical conductors that allow it to do that sensing and change shape accordingly. Properly engineered nastic materials might allow sensors that can be flexed.

Don Leo, professor of mechanical engineering and a member of the Center for Intelligent Materials Systems and Structures (CIMMS) at Virginia Tech, is the principal investigator on this project. His colleagues are: Dr. John Cuppoletti, College of Medicine, University of Cincinnati; Subhash Narang, SRI International, Palo Alto, Cal.; Jay Kudva, NextGen Aeronautics Inc., Torrance, Cal.; and Victor Giurgiutiu, Department of Mechanical Engineering, University of South Carolina. At Virginia Tech, Leo will be working with Tim Long, professor of chemistry, and Lisa Weiland, currently a research scientist at CIMMS who will soon be joining the University of Pittsburgh’s mechanical engineering department.

This highly interdisciplinary team has expertise in molecular biology, polymer chemistry, structural modeling and control, fabrication methodologies, and systems integration required for this program. “As we generate materials that will feature internal pressures that allow the nastic structures to expand and contract, we hope to move on from the morphing wings to other applications that require structures that can produce large shape changes. An example might be a compact container that will deploy into an antenna after it is transported to a particular location,” Leo said.

“Biological systems are excellent templates for the development of high-performance engineering platforms. An understanding of how biological systems move, adapt, communicate, and replicate are providing scientists and engineers with novel approaches to engineering problems. These solutions are producing a revolution in engineering design through the application of biological principles to the design of new autonomous engineering systems,” Leo said.

Virginia Tech began working in the smart materials area in the 1980s, attempting to engineer materials and systems that reflect nature. CIMMS, directed by Dan Inman, who holds the George Goodson endowed professorship, has an international reputation in the smart materials arena.

| newswise
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>