Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Developing New Material for Die-casting Molds

23.08.2004


Automotive manufacturers may soon benefit from a new breed of metals – known as functionally gradient materials – that can withstand the high temperatures of die casting without cracking under pressure, according to a researcher at the University of Missouri-Rolla.



UMR researchers, led by Dr. Frank Liou, director of the manufacturing engineering program and professor of mechanical and aerospace engineering, hope to build better die-casting molds by developing materials that are both durable and heat resistant.

Traditional die-casting molds, made from hardened steel and used to make engine blocks and other components, can cost about $500,000 each, are fairly large and take a long time to build. One of the greatest challenges for car manufacturers has been finding a die-cast metal that can take the heat while maintaining its durability. Now, thanks to Liou’s work, manufacturers are one step closer to having the best of both worlds.


“It is now possible to gradually transition from one material to another,” says Liou. “Potentially this can have a lot of applications. You can basically create a material that gradually transitions from being totally titanium to being totally copper.” These metals are known as functionally gradient materials.

Spartan Light Metal Products, an Illinois-based company that uses die-cast molds to create engine parts, has asked Liou and his research team to investigate whether functionally gradient materials could be used in its manufacturing process. The company produces engine blocks for major automotive companies, including Ford, General Motors, Honda and Toyota.

If the molds were properly created using functionally gradient materials, the cracking could be eliminated, extending the lifespan of these expensive components. “The mold is under a lot of thermal stress,” says Liou. “If it were composed of copper and tool steel, the copper could transfer the heat out, preventing the mold from cracking.”

Thermal barrier coatings, another class of functionally gradient materials, would be able to impede heat transfer where necessary, such as in turbine blades. “Having a smooth transition between the two metals is critical,” says Liou. “Without the gradual change, the mold would still break under the stress.”

The research team is developing gears and a variety of other prototypes using functionally gradient materials. “They are trying to make gears where the outside would be made of Carbide (hardened material) while the inside would be steel,” says Liou, “so the gear would have much stronger properties on the outside.”

Applications for functionally gradient materials are as diverse as the manufacturing field itself. For example, the Navy is interested in using the technology to embed sensors in components, allowing for early detection of a failing part, such as a submarine propeller. “It would be important to detect any problems so they could be fixed before returning to the sea,” says Liou. “In order to place a sensor there, you would need to use functionally gradient materials because the propeller may break away under the strong forces.”

Even researchers in UMR’s own High Pressure Waterjet Laboratory have asked Liou and his team to investigate whether the process could be used to combine diamond powder with steel. “The original steel nozzle for their waterjet lasted about one hour, then had to be thrown away,” says Liou. “Now what they are using is a diamond nozzle, which is very expensive. They would like us to develop a functionally gradient material so that the inside, which is in contact with the water, is made of diamond and the outside is steel.”

| newswise
Further information:
http://www.umr.edu

More articles from Materials Sciences:

nachricht Flying: Efficiency thanks to Lightweight Air Nozzles
23.10.2017 | Technische Universität Chemnitz

nachricht Strange but true: Turning a material upside down can sometimes make it softer
20.10.2017 | Universitat Autonoma de Barcelona

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>