Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Everlasting Fibre-glass Plastic

24.05.2004


More durable helmets, vests, ski-sticks and various other fibre-glass plastic products are close to becoming a reality. Provided, of course, the manufacturers apply new technology – the one developed by the Chernogolovka scientists supported by the Russian Foundation for Basic Research and the Foundation for Assistance to Small Innovative Enterprises (FASIE).



When fibre-glass plastic products were first introduced to the market, the applicability of the material seemed truly unlimited. Later there appeared quite a number of disadvantages to accompany the numerous benefits. Helmets and ski-sticks got broken and boats got cracked. The reason is quite trivial for a composite material – insufficiently strong cohesion between the base, i.e. glass fiber, and the polymer matrix. Under loads and especially in the presence of moisture, the polymer gets exfoliated from the glass fibers which results in cracking. Besides, in extreme conditions the reinforcing glass fiber itself is split into separate monofibres, thus, causing the product destruction.

Theoretically, the solution to this problem is evident: the cohesion among the reinforcing fibers and with the matrix should be strengthened. However, it is not so easily done in practice: glass as well as the polymer polyolefinic matrix are rather inert chemically, inertia being one of the most important advantages of these composites. The adhesion ability of the low-cost polymers (polyethylene, polypropylene) to be preferably used as a matrix is not high either.


A rather effective solution to the problem was offered by the scientists from the Institute of Problems of Chemical Physics, Russian Academy of Sciences. They managed to chemically bond reinforcing glass fibers and the polymer matrix together, having initially modified fibre-glass surface and increased the surface concentration of silanol groups chemically reactive to finishing agents.

As a matter of fact, the authors have not so far succeeded in direct effective reaction between these two passive substances. But they have come up with the materials that could serve as binders between the polymer and glass. The scientists used special finishing substances, including silicon and titanium composites, as a kind of ‘bridges’. To increase the effectiveness of bonding these ‘agents’ to the fiber glass, the scientists learned to activate its surface.

To test the endurance of the materials received using new technology the authors applied all methods available: stretching, bending, breaking, etc. Some technological approaches proved to produce real leaders among fiber glass materials, in their category, of course.

So, the Chernogolovka fiber glass method is as follows. You should take manufactured fiber glass, activate it with acid, saturate it with special solution and add melted polymer. The resulting material will be several times more durable than its analogue produced through conventional technology. It will be much more rigid structurally and, in addition, more moisture-resistant. This means that products made of such fiber glass will have extended life and higher reliability.

There are other versions of technology though, each corresponding to a specific kind of polymer matrix. The authors do not disclose the details, these are being patented.

At the same time the scientists go on improving technology, examine structure and properties of new materials, and investigate alternative ways of bonding the polymer matrix to the fiber glass, for instance, radiation. But there is already one thing of which they are sure: the development of a diversity of new materials is nearing completion - those having no analogues either in Russia or abroad.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>