Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Everlasting Fibre-glass Plastic

24.05.2004


More durable helmets, vests, ski-sticks and various other fibre-glass plastic products are close to becoming a reality. Provided, of course, the manufacturers apply new technology – the one developed by the Chernogolovka scientists supported by the Russian Foundation for Basic Research and the Foundation for Assistance to Small Innovative Enterprises (FASIE).



When fibre-glass plastic products were first introduced to the market, the applicability of the material seemed truly unlimited. Later there appeared quite a number of disadvantages to accompany the numerous benefits. Helmets and ski-sticks got broken and boats got cracked. The reason is quite trivial for a composite material – insufficiently strong cohesion between the base, i.e. glass fiber, and the polymer matrix. Under loads and especially in the presence of moisture, the polymer gets exfoliated from the glass fibers which results in cracking. Besides, in extreme conditions the reinforcing glass fiber itself is split into separate monofibres, thus, causing the product destruction.

Theoretically, the solution to this problem is evident: the cohesion among the reinforcing fibers and with the matrix should be strengthened. However, it is not so easily done in practice: glass as well as the polymer polyolefinic matrix are rather inert chemically, inertia being one of the most important advantages of these composites. The adhesion ability of the low-cost polymers (polyethylene, polypropylene) to be preferably used as a matrix is not high either.


A rather effective solution to the problem was offered by the scientists from the Institute of Problems of Chemical Physics, Russian Academy of Sciences. They managed to chemically bond reinforcing glass fibers and the polymer matrix together, having initially modified fibre-glass surface and increased the surface concentration of silanol groups chemically reactive to finishing agents.

As a matter of fact, the authors have not so far succeeded in direct effective reaction between these two passive substances. But they have come up with the materials that could serve as binders between the polymer and glass. The scientists used special finishing substances, including silicon and titanium composites, as a kind of ‘bridges’. To increase the effectiveness of bonding these ‘agents’ to the fiber glass, the scientists learned to activate its surface.

To test the endurance of the materials received using new technology the authors applied all methods available: stretching, bending, breaking, etc. Some technological approaches proved to produce real leaders among fiber glass materials, in their category, of course.

So, the Chernogolovka fiber glass method is as follows. You should take manufactured fiber glass, activate it with acid, saturate it with special solution and add melted polymer. The resulting material will be several times more durable than its analogue produced through conventional technology. It will be much more rigid structurally and, in addition, more moisture-resistant. This means that products made of such fiber glass will have extended life and higher reliability.

There are other versions of technology though, each corresponding to a specific kind of polymer matrix. The authors do not disclose the details, these are being patented.

At the same time the scientists go on improving technology, examine structure and properties of new materials, and investigate alternative ways of bonding the polymer matrix to the fiber glass, for instance, radiation. But there is already one thing of which they are sure: the development of a diversity of new materials is nearing completion - those having no analogues either in Russia or abroad.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Materials Sciences:

nachricht Researchers printed graphene-like materials with inkjet
18.08.2017 | Aalto University

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>