Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wrapped in polymers

06.04.2004


Food packs, containers, toothpaste tubes, wheels, glue, paints ... they are all made of polymers. The world of polymers is infinite and, so, there is a great variety. The majority have been designed for a specific application; given that at times the application might be for a food container and, at others, for the superstructure of a vehicle. The specifications needed in either case are quite different.



Polymers are gigantic molecules, but they are synthesised from small compounds: monomers. In fact, the name of the polymer normally indicates from which monomer it has been synthesised. For example, polystyrene (PS) is obtained from styrene, polyvinyl chloride (PVC) from vinyl chloride, etc.

But not polystyrenes are the same. Depending on the length of the monomer chain or on the mode of synthesis or processing, the final result can vary. Thus, before analysing any polymer, it is necessary to characterise it thoroughly.


Transport properties

At the Chemistry Faculty of the Donostia campus of the University of the Basque Country, the transport properties of polymers, amongst other properties, are being researched. That is, how small molecules (water vapour, oxygen, CO2 and so on) are transported in a polymer.

For example, transparent film to protect foodstuffs is made of polymers. It is essential to know the following: what substances are absorbed by this film, at what rate they are absorbed, at what point does the film become saturated, what is the manner in which these substances are transported through the polymer and, once penetrated the film, how many get to the other side. Apart from these characteristics the permeability of the polymer is also analysed.

In this way, case by case, the transport properties of each polymer is analysed.

Biodegradable polymers

All these theoretical and experimental analyses have one aim: to understand the transport properties of polymers and get to know them better in order to enhance these polymer characteristics. That is, industry will always look for the ideal polymer for its needs, needless to say taking into account price and ease of industrial handling of the polymer.

But from here on in, this search will have to include a feature which, up to now, has not been taken into account: the capacity for degradation. This is due to the fact that polymers degrade very slowly and, on many occasions during this process, compounds are produced which are a danger to nature. This is why, in the coming years legislation will be introduced to ensure that polymers are biodegradable, at least to a certain percentage. One of the objectives of the researchers at the Donostia campus is to start investigating polymers with these characteristics.

Garazi Andonegi | Basque research
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=444&hizk=I
http://www.ehu.es

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>