Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wrapped in polymers

06.04.2004


Food packs, containers, toothpaste tubes, wheels, glue, paints ... they are all made of polymers. The world of polymers is infinite and, so, there is a great variety. The majority have been designed for a specific application; given that at times the application might be for a food container and, at others, for the superstructure of a vehicle. The specifications needed in either case are quite different.



Polymers are gigantic molecules, but they are synthesised from small compounds: monomers. In fact, the name of the polymer normally indicates from which monomer it has been synthesised. For example, polystyrene (PS) is obtained from styrene, polyvinyl chloride (PVC) from vinyl chloride, etc.

But not polystyrenes are the same. Depending on the length of the monomer chain or on the mode of synthesis or processing, the final result can vary. Thus, before analysing any polymer, it is necessary to characterise it thoroughly.


Transport properties

At the Chemistry Faculty of the Donostia campus of the University of the Basque Country, the transport properties of polymers, amongst other properties, are being researched. That is, how small molecules (water vapour, oxygen, CO2 and so on) are transported in a polymer.

For example, transparent film to protect foodstuffs is made of polymers. It is essential to know the following: what substances are absorbed by this film, at what rate they are absorbed, at what point does the film become saturated, what is the manner in which these substances are transported through the polymer and, once penetrated the film, how many get to the other side. Apart from these characteristics the permeability of the polymer is also analysed.

In this way, case by case, the transport properties of each polymer is analysed.

Biodegradable polymers

All these theoretical and experimental analyses have one aim: to understand the transport properties of polymers and get to know them better in order to enhance these polymer characteristics. That is, industry will always look for the ideal polymer for its needs, needless to say taking into account price and ease of industrial handling of the polymer.

But from here on in, this search will have to include a feature which, up to now, has not been taken into account: the capacity for degradation. This is due to the fact that polymers degrade very slowly and, on many occasions during this process, compounds are produced which are a danger to nature. This is why, in the coming years legislation will be introduced to ensure that polymers are biodegradable, at least to a certain percentage. One of the objectives of the researchers at the Donostia campus is to start investigating polymers with these characteristics.

Garazi Andonegi | Basque research
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=444&hizk=I
http://www.ehu.es

More articles from Materials Sciences:

nachricht Researchers invent process to make sustainable rubber, plastics
25.04.2017 | University of Delaware

nachricht Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging
24.04.2017 | Pohang University of Science & Technology (POSTECH)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>