Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aerogels: ’Solid Smoke’ May Have Many Uses

05.04.2004


It looks like glass and feels like solidified smoke, but the most interesting features of the new silica aerogels made by UC Davis and Lawrence Livermore National Laboratory researchers are too small to see or feel. Lighter than styrofoam, this strange material is riddled with pores just nanometers in size, leaving it 98 percent empty.



Water can soak into the material, but in the confined space the water molecules arrange themselves in unusual ways, said Subhash Risbud, professor of chemical engineering and materials science at UC Davis. For example, a lipid membrane can spread across a wet aerogel just as it does around a living cell.

Scientists studying such lipid membranes usually put them on a wafer of silicon or gold. Instead, the aerogel provides a wet cushion for the membrane, allowing it to have moisture on both sides and act more like a real cell in which membranes are studded with proteins. Researchers at Stanford University, led by engineering professor Curtis Frank and Risbud, recently patented the concept.


The invention could be used for investigating diseases such as lupus and rheumatoid arthritis and for biological testing devices.

Aerogels are made by taking a wet gel -- a meshwork of molecules in liquid, such as water -- and removing the water to leave a spongy structure. The first aerogels were made in the 1930s by Samuel Kistler, and the technology was further developed by Lawrence Hrubesh and colleagues at the Lawrence Livermore National Laboratory over 40 years later.

Silica aerogels also have many other applications in fiber optics, insulation against sound or heat, and miniature pumps for built-in refrigeration systems in packaging, Risbud said.

The research project was part of the Center on Polymer Interfaces and Macromolecular Assemblies, a collaboration between Stanford, UC Davis, UC Berkeley and the IBM Almaden Research Center. Risbud also continues to collaborate with Joe Satcher and John Poco of the Lawrence Livermore National Laboratory on silica aerogels.


Media contacts:
• Subhash Risbud, Chemical Engineering and Materials Science, (530) 752-0474, shrisbud@ucdavis.edu
• Andy Fell, UC Davis News Service, (530) 752-4533, ahfell@ucdavis.edu

Andy Fell | UC Davis
Further information:
http://www.news.ucdavis.edu/search/news_detail.lasso?id=6969

More articles from Materials Sciences:

nachricht Breaking bad metals with neutrons
16.01.2018 | DOE/Argonne National Laboratory

nachricht White graphene makes ceramics multifunctional
16.01.2018 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>