Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aerogels: ’Solid Smoke’ May Have Many Uses

05.04.2004


It looks like glass and feels like solidified smoke, but the most interesting features of the new silica aerogels made by UC Davis and Lawrence Livermore National Laboratory researchers are too small to see or feel. Lighter than styrofoam, this strange material is riddled with pores just nanometers in size, leaving it 98 percent empty.



Water can soak into the material, but in the confined space the water molecules arrange themselves in unusual ways, said Subhash Risbud, professor of chemical engineering and materials science at UC Davis. For example, a lipid membrane can spread across a wet aerogel just as it does around a living cell.

Scientists studying such lipid membranes usually put them on a wafer of silicon or gold. Instead, the aerogel provides a wet cushion for the membrane, allowing it to have moisture on both sides and act more like a real cell in which membranes are studded with proteins. Researchers at Stanford University, led by engineering professor Curtis Frank and Risbud, recently patented the concept.


The invention could be used for investigating diseases such as lupus and rheumatoid arthritis and for biological testing devices.

Aerogels are made by taking a wet gel -- a meshwork of molecules in liquid, such as water -- and removing the water to leave a spongy structure. The first aerogels were made in the 1930s by Samuel Kistler, and the technology was further developed by Lawrence Hrubesh and colleagues at the Lawrence Livermore National Laboratory over 40 years later.

Silica aerogels also have many other applications in fiber optics, insulation against sound or heat, and miniature pumps for built-in refrigeration systems in packaging, Risbud said.

The research project was part of the Center on Polymer Interfaces and Macromolecular Assemblies, a collaboration between Stanford, UC Davis, UC Berkeley and the IBM Almaden Research Center. Risbud also continues to collaborate with Joe Satcher and John Poco of the Lawrence Livermore National Laboratory on silica aerogels.


Media contacts:
• Subhash Risbud, Chemical Engineering and Materials Science, (530) 752-0474, shrisbud@ucdavis.edu
• Andy Fell, UC Davis News Service, (530) 752-4533, ahfell@ucdavis.edu

Andy Fell | UC Davis
Further information:
http://www.news.ucdavis.edu/search/news_detail.lasso?id=6969

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>