Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Aerogels: ’Solid Smoke’ May Have Many Uses


It looks like glass and feels like solidified smoke, but the most interesting features of the new silica aerogels made by UC Davis and Lawrence Livermore National Laboratory researchers are too small to see or feel. Lighter than styrofoam, this strange material is riddled with pores just nanometers in size, leaving it 98 percent empty.

Water can soak into the material, but in the confined space the water molecules arrange themselves in unusual ways, said Subhash Risbud, professor of chemical engineering and materials science at UC Davis. For example, a lipid membrane can spread across a wet aerogel just as it does around a living cell.

Scientists studying such lipid membranes usually put them on a wafer of silicon or gold. Instead, the aerogel provides a wet cushion for the membrane, allowing it to have moisture on both sides and act more like a real cell in which membranes are studded with proteins. Researchers at Stanford University, led by engineering professor Curtis Frank and Risbud, recently patented the concept.

The invention could be used for investigating diseases such as lupus and rheumatoid arthritis and for biological testing devices.

Aerogels are made by taking a wet gel -- a meshwork of molecules in liquid, such as water -- and removing the water to leave a spongy structure. The first aerogels were made in the 1930s by Samuel Kistler, and the technology was further developed by Lawrence Hrubesh and colleagues at the Lawrence Livermore National Laboratory over 40 years later.

Silica aerogels also have many other applications in fiber optics, insulation against sound or heat, and miniature pumps for built-in refrigeration systems in packaging, Risbud said.

The research project was part of the Center on Polymer Interfaces and Macromolecular Assemblies, a collaboration between Stanford, UC Davis, UC Berkeley and the IBM Almaden Research Center. Risbud also continues to collaborate with Joe Satcher and John Poco of the Lawrence Livermore National Laboratory on silica aerogels.

Media contacts:
• Subhash Risbud, Chemical Engineering and Materials Science, (530) 752-0474,
• Andy Fell, UC Davis News Service, (530) 752-4533,

Andy Fell | UC Davis
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>