Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Jekyll and Hyde of granular materials uncovered

01.04.2004


Granular materials – which include everything from coal to coco pops – are physical substances that don’t quite fit into any of the known phases of matter: solid, liquid, or gas.



Keep the grains under pressure, vacuum-packed coffee for example, and you have solid-like behaviour; open the pack and pour it into a container and suddenly the grains flow freely like a liquid.

The changing personalities of granular materials can have devastating implications, for example the disturbance of the earth following an earthquake can be enough to trigger solid ground to turn to mush with catastrophic consequences.


Dr. Antoinette Tordesillas, a senior lecturer at the Department of Mathematics and Statistics at the University of Melbourne says, "Even a fractional advance in our understanding of how granular media behave can have a profound impact on the economic and general well-being of nations worldwide."

Yet, despite being second only to water on the scale of priorities of human activities, and believed to account for ten per cent of all energy consumed on Earth, the physics behind granular materials remain largely unknown.

Dr. Tordesillas says, "The reason for this is that these seemingly simple materials exhibit a rich and complex rheology."

Scientists have generally turned to the continuum theory for predicting the behaviours of solids and liquids – it looks at an object as a whole rather than the sum of its parts.

However, the theory collapses when applied to granular materials because information about the properties of the material at the particle level is missing – it treats a bag of sand as a solid block and does not contain information about the individual grains and how easily they rub and roll against each other.

An alternative is to model every single grain, which is what the discrete element method (DEM) does, but this technique is computationally intensive and extremely costly, and a handful of sand is about as much as current supercomputers can handle.

A more recent model, the enriched continuum model, is a hybrid of the continuum and DEM.

It uses the basic form of the continuum model but enriches it with information at the microstructural level, so the equation that describes a bag of sand is penetrated with information about the individual grains and how they interact with each other.

Dr. Tordesillas says, "The result is a picture that has a much higher resolution than that offered by continuum theory."

"At the correct level of resolution it is possible to see critical microstructures, called ’shear-bands’, which give insight into the failure properties and personality shifts of such materials."

"In a sense, we are endeavouring to understand what triggers the personality change in granular materials and the shear band is the key or signature microstructure that these materials manifest as they undergo a transition from solid to liquid."

Nobody has successfully managed to understand the nature of shear bands to date.

Now, the Mechanics and Granular Media Group of the Department of Mathematics and Statistics at the University of Melbourne, led by Dr. Tordesillas, have pioneered the first enriched continuum model capable of seeing shear bands.

Dr. Tordesillas says, "We have found a way to capture and predict not only the split personality but also the key transition mechanism."

"This entirely new level of predictive capability is unmatched by any other continuum model developed to date, and the beauty of it is that not only is it more computationally efficient than DEM, but all the underlying physics at the microscale level are there, fully exposed in the equations."

"By implementing this new breed of material model in computer simulations of granular processes, we hope to gain more accurate predictions and therefore better control of granular behaviour in real world situations."

The findings are published in the journals Powder Technology, Geotechnique, Acta Mechanica, Granular Matter, International Journal for Analytical and Numerical Methods in Geomechanics, BIT Numerik Mathematik, and the International Journal of Solids and Structures.

Elaine Mulcahy | EurekAlert!
Further information:
http://www.unimelb.edu.au/

More articles from Materials Sciences:

nachricht How effective are bonding agents? Fraunhofer uses liquid chromatography for characterization
24.10.2017 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Flying: Efficiency thanks to Lightweight Air Nozzles
23.10.2017 | Technische Universität Chemnitz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Single nanoparticle mapping paves the way for better nanotechnology

24.10.2017 | Physics and Astronomy

A quantum spin liquid

24.10.2017 | Physics and Astronomy

Antibiotic resistance: a strain of multidrug-resistant Escherichia coli is on the rise

24.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>