Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The Jekyll and Hyde of granular materials uncovered


Granular materials – which include everything from coal to coco pops – are physical substances that don’t quite fit into any of the known phases of matter: solid, liquid, or gas.

Keep the grains under pressure, vacuum-packed coffee for example, and you have solid-like behaviour; open the pack and pour it into a container and suddenly the grains flow freely like a liquid.

The changing personalities of granular materials can have devastating implications, for example the disturbance of the earth following an earthquake can be enough to trigger solid ground to turn to mush with catastrophic consequences.

Dr. Antoinette Tordesillas, a senior lecturer at the Department of Mathematics and Statistics at the University of Melbourne says, "Even a fractional advance in our understanding of how granular media behave can have a profound impact on the economic and general well-being of nations worldwide."

Yet, despite being second only to water on the scale of priorities of human activities, and believed to account for ten per cent of all energy consumed on Earth, the physics behind granular materials remain largely unknown.

Dr. Tordesillas says, "The reason for this is that these seemingly simple materials exhibit a rich and complex rheology."

Scientists have generally turned to the continuum theory for predicting the behaviours of solids and liquids – it looks at an object as a whole rather than the sum of its parts.

However, the theory collapses when applied to granular materials because information about the properties of the material at the particle level is missing – it treats a bag of sand as a solid block and does not contain information about the individual grains and how easily they rub and roll against each other.

An alternative is to model every single grain, which is what the discrete element method (DEM) does, but this technique is computationally intensive and extremely costly, and a handful of sand is about as much as current supercomputers can handle.

A more recent model, the enriched continuum model, is a hybrid of the continuum and DEM.

It uses the basic form of the continuum model but enriches it with information at the microstructural level, so the equation that describes a bag of sand is penetrated with information about the individual grains and how they interact with each other.

Dr. Tordesillas says, "The result is a picture that has a much higher resolution than that offered by continuum theory."

"At the correct level of resolution it is possible to see critical microstructures, called ’shear-bands’, which give insight into the failure properties and personality shifts of such materials."

"In a sense, we are endeavouring to understand what triggers the personality change in granular materials and the shear band is the key or signature microstructure that these materials manifest as they undergo a transition from solid to liquid."

Nobody has successfully managed to understand the nature of shear bands to date.

Now, the Mechanics and Granular Media Group of the Department of Mathematics and Statistics at the University of Melbourne, led by Dr. Tordesillas, have pioneered the first enriched continuum model capable of seeing shear bands.

Dr. Tordesillas says, "We have found a way to capture and predict not only the split personality but also the key transition mechanism."

"This entirely new level of predictive capability is unmatched by any other continuum model developed to date, and the beauty of it is that not only is it more computationally efficient than DEM, but all the underlying physics at the microscale level are there, fully exposed in the equations."

"By implementing this new breed of material model in computer simulations of granular processes, we hope to gain more accurate predictions and therefore better control of granular behaviour in real world situations."

The findings are published in the journals Powder Technology, Geotechnique, Acta Mechanica, Granular Matter, International Journal for Analytical and Numerical Methods in Geomechanics, BIT Numerik Mathematik, and the International Journal of Solids and Structures.

Elaine Mulcahy | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht For graphite pellets, just add elbow grease
23.03.2018 | Rice University

nachricht Sensitive grip
23.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>