Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Composite fibers with carbon nanotubes offer improved mechanical & electrical properties

29.03.2004


A new class of fibers



Strong and versatile carbon nanotubes are finding new applications in improving conventional polymer-based fibers and films. For example, composite fibers made from single-walled carbon nanotubes (SWNTs) and polyacrylonitrile – a carbon fiber precursor – are stronger, stiffer and shrink less than standard fibers.

Nanotube-reinforced composites could ultimately provide the foundation for a new class of strong and lightweight fibers with properties such as electrical and thermal conductivity unavailable in current textile fibers.


Researchers from the Georgia Institute of Technology, Rice University, Carbon Nanotechnologies, Inc. and the U.S. Air Force have been developing new processes for incorporating nanotubes into fibers and films. The results of that work will be presented March 28 at the 227th national meeting of the American Chemical Society in Anaheim, Calif.

"We are going to have dramatic developments in the textile materials field over the next 10 or 20 years because of nanotechnology, specifically carbon nanotubes," predicted Satish Kumar, a professor in Georgia Tech’s School of Polymer, Textile and Fiber Engineering. "Using carbon nanotubes, we could make textile fibers that would have thermal and electrical conductivity, but with the touch and feel of a typical textile. You could have a shirt in which the electrically-conducting fibers allow cell phone functionality to be built in without using metallic wires or optical fibers."

Thanks to the work of Kumar and researchers at the Air Force Research Laboratory, nanotubes have already found their way into fibers known as Zylon, the strongest polymeric fiber in the world. By incorporating 10 percent nanotubes, research has shown that the strength of this fiber can be increased by 50 percent.

Recently, Kumar’s research team has been collaborating with Richard Smalley, a Rice University professor who received a 1996 Nobel Prize for his work in developing nanotubes, which are of great interest because of their high strength, light weight, electrical conductivity and thermal resistance.

The researchers have developed a technique for producing composite fibers containing varying percentages of carbon nanotubes, up to a maximum of about 10 percent. Produced by Rice University and Carbon Nanotechnologies, Inc., single-walled nanotubes exist in bundles 30 nanometers in diameter containing more than 100 tubes.

To produce composite fibers, the bundles are first dispersed in an organic solvent, acid or water containing surfactants. Polymer materials are then dissolved with the dispersed nanotubes, and fibers produced using standard textile manufacturing techniques and equipment. The resulting composite fibers have the similar touch and feel as standard textile fibers.

Addition of carbon nanotubes to traditional fibers can double their stiffness, reduce shrinkage by 50 percent, raise the temperature at which the material softens by 40 degrees Celsius and improve solvent resistance. Kumar believes these properties will make the composite fibers valuable to the aerospace industry, where the improved strength could reduce the amount of fiber needed for composite structures, cutting weight.

"If you can increase the modulus (stiffness) by a factor of two, in many applications you can also reduce the weight by a factor of two," Kumar noted.

But the greatest impact of carbon nanotubes will be realized only if researchers can learn how to break up the bundles to produce individual nanotubes, a process called exfoliation. If that can be done, the quantity of tubes required to improve the properties of fibers could be reduced from 10 percent to as little as 0.1 percent by weight That could help make use of the tubes – which now cost hundreds of dollars per gram –feasible for commercial products.

Including individual nanotubes in composite fibers could help improve the orientation of the polymer chains they contain, reducing the amount of fiber entanglement and increasing the crystallization rate. That could introduce new properties not currently available in fibers.

"If we can do this, that would conceptually change how fibers are made," Kumar said. "Having a very tough temperature resistant material with a density of less than water seems like a dream today, but we may be able to see that with this new generation of materials."

Beyond breaking up the nanotube bundles, researchers also face a challenge in uniformly dispersing the carbon nanotubes in polymers and properly orienting them.

In addition to aircraft structures, Kumar sees nanotube composite fibers bringing electronic capabilities to garments, perhaps allowing cellular telephone or computing capabilities to be woven in using fibers that have the touch and feel of conventional textiles. But producing conducting fibers would require boosting the nanotube percentage to as much as 20 percent.

To advance these concepts, Kumar hopes to form a "Carbon Nanotube-enabled Materials Consortium" at Georgia Tech to conduct both basic and applied research in areas of interest to industry.

He expects composite fibers based on carbon nanotubes to bring about the most significant changes to the textile industry since synthetic fibers were introduced in the 1930s.

"In 1900, nylon, polyester, polypropylene, Kevlar and other modern fibers did not exist, but life today seems to depend on them," he said. "The rate at which technology is changing is increasing, so much more dramatic changes can be expected in the next 100 years. Every major polymer fiber company in the world is now paying attention to the potential impact of carbon nanotubes."

Papers on the work have appeared in the journals Advanced Materials, Chemistry of Materials, Macromolecules, Nano Letters and Polymer. The work on nanocomposites has been sponsored by the National Science Foundation, Air Force Office of Scientific Research, the Air Force Research Laboratory, the Office of Naval Research, Carbon Nanotechnologies, Inc., and the National Institute of Standards and Technology (NIST).

John Toon | EurekAlert!
Further information:
http://gtresearchnews.gatech.edu/

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>