Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Composite fibers with carbon nanotubes offer improved mechanical & electrical properties

29.03.2004


A new class of fibers



Strong and versatile carbon nanotubes are finding new applications in improving conventional polymer-based fibers and films. For example, composite fibers made from single-walled carbon nanotubes (SWNTs) and polyacrylonitrile – a carbon fiber precursor – are stronger, stiffer and shrink less than standard fibers.

Nanotube-reinforced composites could ultimately provide the foundation for a new class of strong and lightweight fibers with properties such as electrical and thermal conductivity unavailable in current textile fibers.


Researchers from the Georgia Institute of Technology, Rice University, Carbon Nanotechnologies, Inc. and the U.S. Air Force have been developing new processes for incorporating nanotubes into fibers and films. The results of that work will be presented March 28 at the 227th national meeting of the American Chemical Society in Anaheim, Calif.

"We are going to have dramatic developments in the textile materials field over the next 10 or 20 years because of nanotechnology, specifically carbon nanotubes," predicted Satish Kumar, a professor in Georgia Tech’s School of Polymer, Textile and Fiber Engineering. "Using carbon nanotubes, we could make textile fibers that would have thermal and electrical conductivity, but with the touch and feel of a typical textile. You could have a shirt in which the electrically-conducting fibers allow cell phone functionality to be built in without using metallic wires or optical fibers."

Thanks to the work of Kumar and researchers at the Air Force Research Laboratory, nanotubes have already found their way into fibers known as Zylon, the strongest polymeric fiber in the world. By incorporating 10 percent nanotubes, research has shown that the strength of this fiber can be increased by 50 percent.

Recently, Kumar’s research team has been collaborating with Richard Smalley, a Rice University professor who received a 1996 Nobel Prize for his work in developing nanotubes, which are of great interest because of their high strength, light weight, electrical conductivity and thermal resistance.

The researchers have developed a technique for producing composite fibers containing varying percentages of carbon nanotubes, up to a maximum of about 10 percent. Produced by Rice University and Carbon Nanotechnologies, Inc., single-walled nanotubes exist in bundles 30 nanometers in diameter containing more than 100 tubes.

To produce composite fibers, the bundles are first dispersed in an organic solvent, acid or water containing surfactants. Polymer materials are then dissolved with the dispersed nanotubes, and fibers produced using standard textile manufacturing techniques and equipment. The resulting composite fibers have the similar touch and feel as standard textile fibers.

Addition of carbon nanotubes to traditional fibers can double their stiffness, reduce shrinkage by 50 percent, raise the temperature at which the material softens by 40 degrees Celsius and improve solvent resistance. Kumar believes these properties will make the composite fibers valuable to the aerospace industry, where the improved strength could reduce the amount of fiber needed for composite structures, cutting weight.

"If you can increase the modulus (stiffness) by a factor of two, in many applications you can also reduce the weight by a factor of two," Kumar noted.

But the greatest impact of carbon nanotubes will be realized only if researchers can learn how to break up the bundles to produce individual nanotubes, a process called exfoliation. If that can be done, the quantity of tubes required to improve the properties of fibers could be reduced from 10 percent to as little as 0.1 percent by weight That could help make use of the tubes – which now cost hundreds of dollars per gram –feasible for commercial products.

Including individual nanotubes in composite fibers could help improve the orientation of the polymer chains they contain, reducing the amount of fiber entanglement and increasing the crystallization rate. That could introduce new properties not currently available in fibers.

"If we can do this, that would conceptually change how fibers are made," Kumar said. "Having a very tough temperature resistant material with a density of less than water seems like a dream today, but we may be able to see that with this new generation of materials."

Beyond breaking up the nanotube bundles, researchers also face a challenge in uniformly dispersing the carbon nanotubes in polymers and properly orienting them.

In addition to aircraft structures, Kumar sees nanotube composite fibers bringing electronic capabilities to garments, perhaps allowing cellular telephone or computing capabilities to be woven in using fibers that have the touch and feel of conventional textiles. But producing conducting fibers would require boosting the nanotube percentage to as much as 20 percent.

To advance these concepts, Kumar hopes to form a "Carbon Nanotube-enabled Materials Consortium" at Georgia Tech to conduct both basic and applied research in areas of interest to industry.

He expects composite fibers based on carbon nanotubes to bring about the most significant changes to the textile industry since synthetic fibers were introduced in the 1930s.

"In 1900, nylon, polyester, polypropylene, Kevlar and other modern fibers did not exist, but life today seems to depend on them," he said. "The rate at which technology is changing is increasing, so much more dramatic changes can be expected in the next 100 years. Every major polymer fiber company in the world is now paying attention to the potential impact of carbon nanotubes."

Papers on the work have appeared in the journals Advanced Materials, Chemistry of Materials, Macromolecules, Nano Letters and Polymer. The work on nanocomposites has been sponsored by the National Science Foundation, Air Force Office of Scientific Research, the Air Force Research Laboratory, the Office of Naval Research, Carbon Nanotechnologies, Inc., and the National Institute of Standards and Technology (NIST).

John Toon | EurekAlert!
Further information:
http://gtresearchnews.gatech.edu/

More articles from Materials Sciences:

nachricht Melting solid below the freezing point
23.01.2017 | Carnegie Institution for Science

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>