Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn Researchers Introduce a New Nanotube-Laced Gel, Create New Means of Aligning Nanotubes

02.03.2004


Researchers at the University of Pennsylvania have devised a new method for aligning isolated single wall carbon nanotubes and, in the process, have created a new kind of material with liquid crystal-like properties, which they call nematic nanotube gels. The gels could potentially serve as sensors in complex fluids, where changes in local chemical environment, such as acidity or solvent quality, can lead to visible changes in the gel shape. The researchers describe their findings in the current issue of Physical Review Letters.



Single wall carbon nanotubes have astounded researchers with their remarkable strength and their ability to conduct heat and electricity. For many of their potential applications, however, these nanotubes work best when they are aligned parallel to one another, without forming aggregates or bundles. In solutions with low concentrations of single wall carbon nanotubes, the nanotubes are isotropic, or not oriented in a particular direction. If the concentration of the single wall carbon nanotubes is increased sufficiently, it becomes energetically favorable for the nanotubes to align. This is the nematic phase that many researchers have sought to create and utilize.

"Unfortunately, experience has shown that single wall carbon nanotubes tend to clump together or form three-dimensional networks in water at concentrations where theories otherwise predict they will form this nematic liquid crystal phase," said Arjun Yodh, senior author and a professor in Penn Department of Physics and Astronomy. "Our gels effectively increase the concentration of isolated single wall carbon nanotubes without allowing them to bundle up or form networks."


Yodh and his colleagues embedded isolated nanotubes coated by surfactant into a cross-linked polymer matrix, a gel. The volume of the gel is highly temperature dependent, and the researchers were able to compress it to a fraction of its original size by changing its temperature. The gel network prevented the close contact between parallel nanotubes that produces bundling, and its compression produced concentrations of isolated nanotubes that favor nematic alignment. The condensed gel thus creates concentrations of isolated, aligned nanotubes that cannot be achieved when they are suspended in water.

Like liquid crystals, the resulting nanotube gels exhibit beautiful defect patterns revealed by polarized light transmission through the sample that correspond to the particular nanotube alignments. The topology of the defects are, in turn, coupled to the mechanical strains present in the gel.

The researchers are now exploring applications for both the technique and the properties of the nematic nanotube gels.

"Certainly we expect the mechanical, electrical and perhaps thermal properties of the resulting composites to differ from their unaligned counterparts," said Mohammad Islam, a Penn postdoctoral fellow and co-author of the study. "It might be possible to use local influx of particular chemicals to cause mechanical deformations in the gel. Similarly, external fields could interact with the nanotubes, which in turn would interact and deform the background polymer network."

The research was funded by grants from the National Science Foundation and NASA.

Penn has filed patent applications on this technology and the patent rights have been licensed to NanoSelect Inc. Commercial inquiries may be directed to NanoSelect.

Other Penn scientists involved in this study include Ahmed Alsayed, Zvonimir Dogic, Jian Zhang and Tom C. Lubensky.

Greg Lester | University of Pennsylvania
Further information:
http://www.upenn.edu/pennnews/article.php?id=597

More articles from Materials Sciences:

nachricht New concept for structural colors
18.05.2018 | Technische Universität Hamburg-Harburg

nachricht Saarbrücken mathematicians study the cooling of heavy plate from Dillingen
17.05.2018 | Universität des Saarlandes

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>