Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn Researchers Introduce a New Nanotube-Laced Gel, Create New Means of Aligning Nanotubes

02.03.2004


Researchers at the University of Pennsylvania have devised a new method for aligning isolated single wall carbon nanotubes and, in the process, have created a new kind of material with liquid crystal-like properties, which they call nematic nanotube gels. The gels could potentially serve as sensors in complex fluids, where changes in local chemical environment, such as acidity or solvent quality, can lead to visible changes in the gel shape. The researchers describe their findings in the current issue of Physical Review Letters.



Single wall carbon nanotubes have astounded researchers with their remarkable strength and their ability to conduct heat and electricity. For many of their potential applications, however, these nanotubes work best when they are aligned parallel to one another, without forming aggregates or bundles. In solutions with low concentrations of single wall carbon nanotubes, the nanotubes are isotropic, or not oriented in a particular direction. If the concentration of the single wall carbon nanotubes is increased sufficiently, it becomes energetically favorable for the nanotubes to align. This is the nematic phase that many researchers have sought to create and utilize.

"Unfortunately, experience has shown that single wall carbon nanotubes tend to clump together or form three-dimensional networks in water at concentrations where theories otherwise predict they will form this nematic liquid crystal phase," said Arjun Yodh, senior author and a professor in Penn Department of Physics and Astronomy. "Our gels effectively increase the concentration of isolated single wall carbon nanotubes without allowing them to bundle up or form networks."


Yodh and his colleagues embedded isolated nanotubes coated by surfactant into a cross-linked polymer matrix, a gel. The volume of the gel is highly temperature dependent, and the researchers were able to compress it to a fraction of its original size by changing its temperature. The gel network prevented the close contact between parallel nanotubes that produces bundling, and its compression produced concentrations of isolated nanotubes that favor nematic alignment. The condensed gel thus creates concentrations of isolated, aligned nanotubes that cannot be achieved when they are suspended in water.

Like liquid crystals, the resulting nanotube gels exhibit beautiful defect patterns revealed by polarized light transmission through the sample that correspond to the particular nanotube alignments. The topology of the defects are, in turn, coupled to the mechanical strains present in the gel.

The researchers are now exploring applications for both the technique and the properties of the nematic nanotube gels.

"Certainly we expect the mechanical, electrical and perhaps thermal properties of the resulting composites to differ from their unaligned counterparts," said Mohammad Islam, a Penn postdoctoral fellow and co-author of the study. "It might be possible to use local influx of particular chemicals to cause mechanical deformations in the gel. Similarly, external fields could interact with the nanotubes, which in turn would interact and deform the background polymer network."

The research was funded by grants from the National Science Foundation and NASA.

Penn has filed patent applications on this technology and the patent rights have been licensed to NanoSelect Inc. Commercial inquiries may be directed to NanoSelect.

Other Penn scientists involved in this study include Ahmed Alsayed, Zvonimir Dogic, Jian Zhang and Tom C. Lubensky.

Greg Lester | University of Pennsylvania
Further information:
http://www.upenn.edu/pennnews/article.php?id=597

More articles from Materials Sciences:

nachricht New gel-like coating beefs up the performance of lithium-sulfur batteries
22.03.2017 | Yale University

nachricht Pulverizing electronic waste is green, clean -- and cold
22.03.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>