Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Penn Researchers Introduce a New Nanotube-Laced Gel, Create New Means of Aligning Nanotubes


Researchers at the University of Pennsylvania have devised a new method for aligning isolated single wall carbon nanotubes and, in the process, have created a new kind of material with liquid crystal-like properties, which they call nematic nanotube gels. The gels could potentially serve as sensors in complex fluids, where changes in local chemical environment, such as acidity or solvent quality, can lead to visible changes in the gel shape. The researchers describe their findings in the current issue of Physical Review Letters.

Single wall carbon nanotubes have astounded researchers with their remarkable strength and their ability to conduct heat and electricity. For many of their potential applications, however, these nanotubes work best when they are aligned parallel to one another, without forming aggregates or bundles. In solutions with low concentrations of single wall carbon nanotubes, the nanotubes are isotropic, or not oriented in a particular direction. If the concentration of the single wall carbon nanotubes is increased sufficiently, it becomes energetically favorable for the nanotubes to align. This is the nematic phase that many researchers have sought to create and utilize.

"Unfortunately, experience has shown that single wall carbon nanotubes tend to clump together or form three-dimensional networks in water at concentrations where theories otherwise predict they will form this nematic liquid crystal phase," said Arjun Yodh, senior author and a professor in Penn Department of Physics and Astronomy. "Our gels effectively increase the concentration of isolated single wall carbon nanotubes without allowing them to bundle up or form networks."

Yodh and his colleagues embedded isolated nanotubes coated by surfactant into a cross-linked polymer matrix, a gel. The volume of the gel is highly temperature dependent, and the researchers were able to compress it to a fraction of its original size by changing its temperature. The gel network prevented the close contact between parallel nanotubes that produces bundling, and its compression produced concentrations of isolated nanotubes that favor nematic alignment. The condensed gel thus creates concentrations of isolated, aligned nanotubes that cannot be achieved when they are suspended in water.

Like liquid crystals, the resulting nanotube gels exhibit beautiful defect patterns revealed by polarized light transmission through the sample that correspond to the particular nanotube alignments. The topology of the defects are, in turn, coupled to the mechanical strains present in the gel.

The researchers are now exploring applications for both the technique and the properties of the nematic nanotube gels.

"Certainly we expect the mechanical, electrical and perhaps thermal properties of the resulting composites to differ from their unaligned counterparts," said Mohammad Islam, a Penn postdoctoral fellow and co-author of the study. "It might be possible to use local influx of particular chemicals to cause mechanical deformations in the gel. Similarly, external fields could interact with the nanotubes, which in turn would interact and deform the background polymer network."

The research was funded by grants from the National Science Foundation and NASA.

Penn has filed patent applications on this technology and the patent rights have been licensed to NanoSelect Inc. Commercial inquiries may be directed to NanoSelect.

Other Penn scientists involved in this study include Ahmed Alsayed, Zvonimir Dogic, Jian Zhang and Tom C. Lubensky.

Greg Lester | University of Pennsylvania
Further information:

More articles from Materials Sciences:

nachricht How nanoscience will improve our health and lives in the coming years
27.10.2016 | University of California - Los Angeles

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>