Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Etching of deep trenches in silicon explained

05.02.2004


Dutch researcher Michiel Blauw has described the physical limitations of the plasma-etching of deep, narrow microstructures in silicon. His results have led to such an improvement in the etching process that trenches with a depth more than 30 times their width can now be made. This is important for the production of sensitive sensors.



Blauw investigated fluorine-based plasma etching processes. A plasma with a high ion-density ’burns’ a small hole in silicon. Many applications require narrow, deep holes. Blauw studied how the plasma reacts with the silicon and how the sidewalls must be treated so as to make the trench as deep and as straight as possible.

The researcher came up with two ways to improve the profile of the trenches in the so-called Bosch process. During this process, a polymer layer ensures that the sidewalls are not etched by the plasma. However, the thin polymer layer is also deposited onto the bottom of the trench and this hinders the etching of deep, narrow trenches.


Firstly the researcher added a third plasma pulse to the Bosch-process after the etching and passivation pulses. This efficiently removed the polymer layer from the bottom of the trench. A patent has been granted for this method. Secondly he optimised the passivation pulse used to treat the sidewalls so that no polymer deposition occurred on the bottom of the trenches.
This made a maximum depth-width ratio of more than 30 possible.

In principle, the etching of silicon occurs at the same speed in all directions. To obtain the deep, narrow trenches necessary for accurate sensors, the sidewalls must be made insensitive to the plasma. This is termed passivating. After a variety of experiments in which he added oxygen to the plasma or deposited a polymer layer, Blauw found an effective passivating technique. A plasma with a high ion-density removes the passivating layer from the surface. This results in deep, narrow trenches because the ions are accelerated perpendicular to the substrate. He also found that the etch rate as a function of the depth-width ratio can be controlled by tuning the ion-density.

Plasma-etching provides considerable advantages for the manufacture of inertial sensors such as accelerometers and gyroscopes. This is because the manufacturing processes for the sensor and the electronics for signal processing are compatible, allowing both parts to be integrated onto a single chip. Furthermore, increasing the depth-width ratio of the etched microstructures considerably improves the integration density and accuracy of these devices.

The research was funded by the Technology Foundation STW.

Sonja Jacobs | NWO
Further information:
http://www.nwo.nl

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>