Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Etching of deep trenches in silicon explained

05.02.2004


Dutch researcher Michiel Blauw has described the physical limitations of the plasma-etching of deep, narrow microstructures in silicon. His results have led to such an improvement in the etching process that trenches with a depth more than 30 times their width can now be made. This is important for the production of sensitive sensors.



Blauw investigated fluorine-based plasma etching processes. A plasma with a high ion-density ’burns’ a small hole in silicon. Many applications require narrow, deep holes. Blauw studied how the plasma reacts with the silicon and how the sidewalls must be treated so as to make the trench as deep and as straight as possible.

The researcher came up with two ways to improve the profile of the trenches in the so-called Bosch process. During this process, a polymer layer ensures that the sidewalls are not etched by the plasma. However, the thin polymer layer is also deposited onto the bottom of the trench and this hinders the etching of deep, narrow trenches.


Firstly the researcher added a third plasma pulse to the Bosch-process after the etching and passivation pulses. This efficiently removed the polymer layer from the bottom of the trench. A patent has been granted for this method. Secondly he optimised the passivation pulse used to treat the sidewalls so that no polymer deposition occurred on the bottom of the trenches.
This made a maximum depth-width ratio of more than 30 possible.

In principle, the etching of silicon occurs at the same speed in all directions. To obtain the deep, narrow trenches necessary for accurate sensors, the sidewalls must be made insensitive to the plasma. This is termed passivating. After a variety of experiments in which he added oxygen to the plasma or deposited a polymer layer, Blauw found an effective passivating technique. A plasma with a high ion-density removes the passivating layer from the surface. This results in deep, narrow trenches because the ions are accelerated perpendicular to the substrate. He also found that the etch rate as a function of the depth-width ratio can be controlled by tuning the ion-density.

Plasma-etching provides considerable advantages for the manufacture of inertial sensors such as accelerometers and gyroscopes. This is because the manufacturing processes for the sensor and the electronics for signal processing are compatible, allowing both parts to be integrated onto a single chip. Furthermore, increasing the depth-width ratio of the etched microstructures considerably improves the integration density and accuracy of these devices.

The research was funded by the Technology Foundation STW.

Sonja Jacobs | NWO
Further information:
http://www.nwo.nl

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>