Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Production Technique May Let Scientists Fine-Tune Strength and Conductivity of Nanotube-Laced Materials

03.12.2003


Materials fortified with carbon nanotubes are strongest when the embedded filaments run parallel to each other, but electronic and thermal conductivity are best when the nanotubes are oriented randomly. That the finding from a team of engineers at the University of Pennsylvania who have developed a production technique that permits a finer and more precise dispersion of nanotubes within a material.



The results, which could give scientists the tools to customize nano-tube-laced materials to meet their particular needs, are reported online this week and in the Dec. 15 print edition of the Journal of Polymer Science Part B: Polymer Physics. Less than one-ten-thousandth the width of a human hair, carbon nanotubes possess unparalleled strength, superior heat-conducting properties and a unique ability to adopt the electrical properties of either semiconductors or metals, but so far they have failed to back up this theoretical potential with real-world applications.

"A major hurdle that has prevented us from mixing nanotubes into materials to take advantage of these remarkable properties is their stubborn tendency to bundle together," said Karen I. Winey, associate professor of materials science and engineering at Penn. "Uniform dispersion of nanotubes in materials is absolutely critical to harnessing their strength, electrical conductivity and thermal stability."


Winey and her colleagues used a technique called coagulation to mix single-walled carbon nanotubes evenly into a plastic, or polymer, called poly(methyl methylacrylate). In this method, nanotubes and PMMA are first mixed into a solvent, creating a fine suspension, and then plunged into dis-tilled water. The PMMA rapidly precipitates out of this mixture, dragging the nanotubes with it and preventing them from clumping.

After filtration and drying, this nanotube/PMMA compound showed strength and conductivity gains over ordinary PMMA. Furthermore, the composites demonstrated improved thermal stability relative to PMMA, indi-cating promise as a fire-retardant additive. When Winey group compared samples more closely, however, they noticed how greatly the material prop-erties varied with the alignment of the miniature strands of carbon.

"At low concentrations the electrical conductivity of these nanocompo-sites was roughly 100,000 times better when the nanotubes were unaligned than when the nanotubes were well aligned," Winey said. Their process for aligning nanotubes in composites was reported previously.

Other researchers have observed dramatic strength and conductivity improvements in nanotube-laced polymers but typically with the addition of larger quantities of nanotubes than the 2 percent in many of the compounds Winey studied. Because nanotubes are expensive, achieving comparable properties simply by tweaking the alignment of a much smaller number of nanotubes is a significant accomplishment.

"While alignment is an asset for some mechanical properties, alignment is clearly a detriment for electrical properties," Winey said, "here adding more of the expensive nanotubes is not nearly as cost-effective as producing a random orientation of nanotubes in a composite."

Winey was joined in the research by Fangming Du and John E. Fischer of Penn departments of Chemical and Biomolecular Engineering and Materials Science and Engineering, respectively. Their work was supported by the Office of Naval Research.

Penn is seeking corporate partners and investors to commercialize this technology. Additional information is available by contacting David Ruggieri at 215-990-7238.

Greg Lester | University of Pennsylvania
Further information:
http://www.upenn.edu/pennnews/article.php?id=565

More articles from Materials Sciences:

nachricht Graphene origami as a mechanically tunable plasmonic structure for infrared detection
25.04.2018 | University of Illinois College of Engineering

nachricht Scientists create innovative new 'green' concrete using graphene
24.04.2018 | University of Exeter

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>