Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Production Technique May Let Scientists Fine-Tune Strength and Conductivity of Nanotube-Laced Materials

03.12.2003


Materials fortified with carbon nanotubes are strongest when the embedded filaments run parallel to each other, but electronic and thermal conductivity are best when the nanotubes are oriented randomly. That the finding from a team of engineers at the University of Pennsylvania who have developed a production technique that permits a finer and more precise dispersion of nanotubes within a material.



The results, which could give scientists the tools to customize nano-tube-laced materials to meet their particular needs, are reported online this week and in the Dec. 15 print edition of the Journal of Polymer Science Part B: Polymer Physics. Less than one-ten-thousandth the width of a human hair, carbon nanotubes possess unparalleled strength, superior heat-conducting properties and a unique ability to adopt the electrical properties of either semiconductors or metals, but so far they have failed to back up this theoretical potential with real-world applications.

"A major hurdle that has prevented us from mixing nanotubes into materials to take advantage of these remarkable properties is their stubborn tendency to bundle together," said Karen I. Winey, associate professor of materials science and engineering at Penn. "Uniform dispersion of nanotubes in materials is absolutely critical to harnessing their strength, electrical conductivity and thermal stability."


Winey and her colleagues used a technique called coagulation to mix single-walled carbon nanotubes evenly into a plastic, or polymer, called poly(methyl methylacrylate). In this method, nanotubes and PMMA are first mixed into a solvent, creating a fine suspension, and then plunged into dis-tilled water. The PMMA rapidly precipitates out of this mixture, dragging the nanotubes with it and preventing them from clumping.

After filtration and drying, this nanotube/PMMA compound showed strength and conductivity gains over ordinary PMMA. Furthermore, the composites demonstrated improved thermal stability relative to PMMA, indi-cating promise as a fire-retardant additive. When Winey group compared samples more closely, however, they noticed how greatly the material prop-erties varied with the alignment of the miniature strands of carbon.

"At low concentrations the electrical conductivity of these nanocompo-sites was roughly 100,000 times better when the nanotubes were unaligned than when the nanotubes were well aligned," Winey said. Their process for aligning nanotubes in composites was reported previously.

Other researchers have observed dramatic strength and conductivity improvements in nanotube-laced polymers but typically with the addition of larger quantities of nanotubes than the 2 percent in many of the compounds Winey studied. Because nanotubes are expensive, achieving comparable properties simply by tweaking the alignment of a much smaller number of nanotubes is a significant accomplishment.

"While alignment is an asset for some mechanical properties, alignment is clearly a detriment for electrical properties," Winey said, "here adding more of the expensive nanotubes is not nearly as cost-effective as producing a random orientation of nanotubes in a composite."

Winey was joined in the research by Fangming Du and John E. Fischer of Penn departments of Chemical and Biomolecular Engineering and Materials Science and Engineering, respectively. Their work was supported by the Office of Naval Research.

Penn is seeking corporate partners and investors to commercialize this technology. Additional information is available by contacting David Ruggieri at 215-990-7238.

Greg Lester | University of Pennsylvania
Further information:
http://www.upenn.edu/pennnews/article.php?id=565

More articles from Materials Sciences:

nachricht Gelatine instead of forearm
19.04.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Computers create recipe for two new magnetic materials
18.04.2017 | Duke University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>