Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mimicking the human body with carbon black polymers

13.10.2003


Metal detectors have become so commonplace that you might think we know all we need to about them. However, the law enforcement community must continually update performance standards for metal detectors to ensure that new products purchased in the marketplace operate at specified minimum levels. Further-more, they must know if exposure to the magnetic fields generated by metal detectors affects the functioning of personal medical electronic devices (such as cardiac defibrillators, infusion pumps, spinal cord stimulators, etc.)



With funding from the U.S. Department of Justice’s National Institute of Justice, researchers at the National Institute of Standards and Technology (NIST) develop and revise such standards as new technologies become available. One project concentrated on finding better materials to mimic the human body’s response to the magnetic fields generated by metal detectors. By using such biologic "phantoms," researchers can create more realistic testing scenarios without subjecting medical patients to exposure.

Since about two-thirds of the human body is made of water, conventional phantoms utilize liquids and salts. However, the liquids are subject to evaporation that changes both the salinity and the electrical conductivity, making it difficult to model human body components consistently.


The NIST researchers came up with an improved phantom material, a polymer mixed with carbon powder. By varying the amount of carbon powder used, the materials can mimic blood, bone, fat and skin. The researchers chose carbon black--a fine powder made almost entirely of elemental carbon--because of its electrical conductivity and low cost. The impregnated polymers can be formed in a variety of shapes and sizes. A recent NIST publication* discusses the material and its low-frequency electrical properties in detail.


* NIST Technical Note 1529, Carbon-Loaded Polymer Composites Used as Human Phantoms: Theoretical Models for Predicting Low-Frequency Dielectric Behavior. R.G. Geyer, J. Baker-Jarvis, M.D. Janezic, and R.K. Kaiser.

Gail Porter | EurekAlert!
Further information:
http://www.nist.gov/

More articles from Materials Sciences:

nachricht Atomic structure of ultrasound material not what anyone expected
21.02.2018 | North Carolina State University

nachricht Hidden talents: Converting heat into electricity with pencil and paper
20.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>