Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Toronto professor turns hemp into auto parts

30.09.2003


If Mohini Sain has his way, cars of the future may be fitted with tough, durable and completely biodegradable bumpers made of hemp.



Sain, a professor in the University of Toronto’s Faculty of Forestry and Department of Chemical Engineering and Applied Chemistry, creates biocomposites from processed plant fibres. His latest research, published in the August issue of Materials Research Innovations and the July issue of Macromolecular Materials and Engineering, describes a way to create a material from hemp (a member of the cannabis family) that is both strong and lightweight. "We hope to develop this technology for automotive interior parts like instrument panels, structural applications for buildings and sports equipment and, ultimately, for medical devices such as cardiac devices and blood bags," says Sain.

In the studies, Sain treated stalks of hemp with chemicals to break down the "glue" that holds clumps of fibres together. The plant material was then combined with synthetic plastics. However, if it is mixed with plastics made from soy beans or pulp and paper sludge, researchers can create tough biocomposites that are completely biodegradable. Finally, using a combination of heat and pressure, they compressed the material into a variety of shapes. While these studies used hemp, the process also works with flax, wheat and corn.


Sain says these "green" materials could ultimately help Canada reduce its greenhouse gas emissions. "One of the greatest benefits of this technology is that we will not harm our environment by overproducing these natural fibres," says Sain. "It’s a step towards reducing petrochemical-based material consumption and living in a bio-based economy."


CONTACT: Professor Mohini Sain, Faculty of Forestry/Department of Chemical Engineering and Applied Chemistry, 416-946-3191, m.sain@utoronto.ca or Janet Wong, U of T public affairs, 416-978-5949, jf.wong@utoronto.ca


Janet Wong | U of T
Further information:
http://www.utoronto.ca/

More articles from Materials Sciences:

nachricht Glass's off-kilter harmonies
18.01.2017 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Explaining how 2-D materials break at the atomic level
18.01.2017 | Institute for Basic Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>