Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Toronto professor turns hemp into auto parts

30.09.2003


If Mohini Sain has his way, cars of the future may be fitted with tough, durable and completely biodegradable bumpers made of hemp.



Sain, a professor in the University of Toronto’s Faculty of Forestry and Department of Chemical Engineering and Applied Chemistry, creates biocomposites from processed plant fibres. His latest research, published in the August issue of Materials Research Innovations and the July issue of Macromolecular Materials and Engineering, describes a way to create a material from hemp (a member of the cannabis family) that is both strong and lightweight. "We hope to develop this technology for automotive interior parts like instrument panels, structural applications for buildings and sports equipment and, ultimately, for medical devices such as cardiac devices and blood bags," says Sain.

In the studies, Sain treated stalks of hemp with chemicals to break down the "glue" that holds clumps of fibres together. The plant material was then combined with synthetic plastics. However, if it is mixed with plastics made from soy beans or pulp and paper sludge, researchers can create tough biocomposites that are completely biodegradable. Finally, using a combination of heat and pressure, they compressed the material into a variety of shapes. While these studies used hemp, the process also works with flax, wheat and corn.


Sain says these "green" materials could ultimately help Canada reduce its greenhouse gas emissions. "One of the greatest benefits of this technology is that we will not harm our environment by overproducing these natural fibres," says Sain. "It’s a step towards reducing petrochemical-based material consumption and living in a bio-based economy."


CONTACT: Professor Mohini Sain, Faculty of Forestry/Department of Chemical Engineering and Applied Chemistry, 416-946-3191, m.sain@utoronto.ca or Janet Wong, U of T public affairs, 416-978-5949, jf.wong@utoronto.ca


Janet Wong | U of T
Further information:
http://www.utoronto.ca/

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>