Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Toronto professor turns hemp into auto parts

30.09.2003


If Mohini Sain has his way, cars of the future may be fitted with tough, durable and completely biodegradable bumpers made of hemp.



Sain, a professor in the University of Toronto’s Faculty of Forestry and Department of Chemical Engineering and Applied Chemistry, creates biocomposites from processed plant fibres. His latest research, published in the August issue of Materials Research Innovations and the July issue of Macromolecular Materials and Engineering, describes a way to create a material from hemp (a member of the cannabis family) that is both strong and lightweight. "We hope to develop this technology for automotive interior parts like instrument panels, structural applications for buildings and sports equipment and, ultimately, for medical devices such as cardiac devices and blood bags," says Sain.

In the studies, Sain treated stalks of hemp with chemicals to break down the "glue" that holds clumps of fibres together. The plant material was then combined with synthetic plastics. However, if it is mixed with plastics made from soy beans or pulp and paper sludge, researchers can create tough biocomposites that are completely biodegradable. Finally, using a combination of heat and pressure, they compressed the material into a variety of shapes. While these studies used hemp, the process also works with flax, wheat and corn.


Sain says these "green" materials could ultimately help Canada reduce its greenhouse gas emissions. "One of the greatest benefits of this technology is that we will not harm our environment by overproducing these natural fibres," says Sain. "It’s a step towards reducing petrochemical-based material consumption and living in a bio-based economy."


CONTACT: Professor Mohini Sain, Faculty of Forestry/Department of Chemical Engineering and Applied Chemistry, 416-946-3191, m.sain@utoronto.ca or Janet Wong, U of T public affairs, 416-978-5949, jf.wong@utoronto.ca


Janet Wong | U of T
Further information:
http://www.utoronto.ca/

More articles from Materials Sciences:

nachricht Breaking bad metals with neutrons
16.01.2018 | DOE/Argonne National Laboratory

nachricht White graphene makes ceramics multifunctional
16.01.2018 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>