Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synthesis of cage-like silica structure easier and cheaper

16.09.2003


A tailored, cage-like silica structure, developed by Penn State researchers, is easier and less expensive to make than previous materials and is tunable in size.



"Previous attempts at synthesizing materials like PSU-1 involved specially designed templates making the process expensive," says Dr. Sridhar Komarneni, professor of clay mineralogy. "The processes also require stringent conditions for the synthesis to work." Komarneni, working with Dr. Bharat L. Newalkar, postdoctoral fellow in Penn State’s Materials Research Institute; Uday T. Turaga, graduate student in the fuel science program and geoenvironmental engineering; and Dr. Hiroaki Katsuki of Saga Ceramics Research Laboratory, Japan, used a hybrid mechanism to synthesize the same product.

"We believe that this approach has the potential to result in new synthetic strategies for tailoring new framework compositions for specific applications in the fields of catalysis, adsorption, and nanotechnology," the researchers reported at the recent American Chemical Society annual meeting in New York and in the Journal of Materials Chemistry.


Silica materials similar to PSU-1 exist and are small particles with nanoscopic pores. Some have hexagonal, close-packed pores. Others are cubic with three-dimensional linkages. These tailored materials, which appear powder like, are usually created by producing a template in the shape of the required pore. The silica forms around the template, which is then removed either with organic solvents or by heating until the template material calcines.

PSU-1 has a more complex pore structure than cubic or hexagonal. The pore, referred to as a cage, has a central large hollow area with smaller tubes connecting the central pore spaces. Manufacturing a template to create this structure is possible, but expensive and time-consuming.

"We prepared two gels and two templates and mixed them together to see what kind of material might come up with this hybrid template," says Komarneni. "We were surprised to get a really new structure, not like the two starting structures."

The two sets of templates and gels mixed together – one forms large pores and one forms small pores – created the cage-like structure. Altering the size of the templates alters the sizes of the pores, which have sizes of 4.6 and 5.4 nanometers, while the powders are 30 to 40 micrometers in diameter.

The researchers add another twist by using microwaves to synthesize the material in liquid. Microwaving takes a much shorter time than conventional heating techniques, creates a more stable material and the 30 to 40 micrometer particles are much bigger than the previously produced 1 to 2 micrometer particles.

"We can tell it is a cage with passageway structure because very small molecules will block the flow through the particles and that will not happen in the hexagonally arranged pores of a silica particle," says Komarneni. "What we do not know is how many tubes branch off from each central cage."


###
The National Science Foundation-supported Penn State Materials Research Science and Engineering Center supported this work.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Materials Sciences:

nachricht Nagoya University researchers break down plastic waste
29.05.2017 | Nagoya University

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>