Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synthesis of cage-like silica structure easier and cheaper

16.09.2003


A tailored, cage-like silica structure, developed by Penn State researchers, is easier and less expensive to make than previous materials and is tunable in size.



"Previous attempts at synthesizing materials like PSU-1 involved specially designed templates making the process expensive," says Dr. Sridhar Komarneni, professor of clay mineralogy. "The processes also require stringent conditions for the synthesis to work." Komarneni, working with Dr. Bharat L. Newalkar, postdoctoral fellow in Penn State’s Materials Research Institute; Uday T. Turaga, graduate student in the fuel science program and geoenvironmental engineering; and Dr. Hiroaki Katsuki of Saga Ceramics Research Laboratory, Japan, used a hybrid mechanism to synthesize the same product.

"We believe that this approach has the potential to result in new synthetic strategies for tailoring new framework compositions for specific applications in the fields of catalysis, adsorption, and nanotechnology," the researchers reported at the recent American Chemical Society annual meeting in New York and in the Journal of Materials Chemistry.


Silica materials similar to PSU-1 exist and are small particles with nanoscopic pores. Some have hexagonal, close-packed pores. Others are cubic with three-dimensional linkages. These tailored materials, which appear powder like, are usually created by producing a template in the shape of the required pore. The silica forms around the template, which is then removed either with organic solvents or by heating until the template material calcines.

PSU-1 has a more complex pore structure than cubic or hexagonal. The pore, referred to as a cage, has a central large hollow area with smaller tubes connecting the central pore spaces. Manufacturing a template to create this structure is possible, but expensive and time-consuming.

"We prepared two gels and two templates and mixed them together to see what kind of material might come up with this hybrid template," says Komarneni. "We were surprised to get a really new structure, not like the two starting structures."

The two sets of templates and gels mixed together – one forms large pores and one forms small pores – created the cage-like structure. Altering the size of the templates alters the sizes of the pores, which have sizes of 4.6 and 5.4 nanometers, while the powders are 30 to 40 micrometers in diameter.

The researchers add another twist by using microwaves to synthesize the material in liquid. Microwaving takes a much shorter time than conventional heating techniques, creates a more stable material and the 30 to 40 micrometer particles are much bigger than the previously produced 1 to 2 micrometer particles.

"We can tell it is a cage with passageway structure because very small molecules will block the flow through the particles and that will not happen in the hexagonally arranged pores of a silica particle," says Komarneni. "What we do not know is how many tubes branch off from each central cage."


###
The National Science Foundation-supported Penn State Materials Research Science and Engineering Center supported this work.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Materials Sciences:

nachricht Melting solid below the freezing point
23.01.2017 | Carnegie Institution for Science

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>