Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Waste fiber can be recycled into valuable products using new technique of electrospinning, Cornell researchers report

11.09.2003


It may soon be possible to produce a low cost, high-value, high-strength fiber from a biodegradable and renewable waste product for air filtration, water filtration and agricultural nanotechnology, report polymer scientists at Cornell University. The achievement is the result of using the recently perfected technique of electrospinning to spin nanofibers from cellulose.

"Cellulose is the most abundant renewable resource polymer on earth. It forms the structure of all plants," says Margaret Frey, an assistant professor of textiles and apparel at Cornell. "Although researchers have predicted that fibers with strength approaching Kevlar could be made from this fiber, no one has yet achieved this. We have developed some new solvents for cellulose, which have allowed us to produce fibers using the technique known as electrospinning."

Frey is collaborating on the research with Yong Joo, an assistant professor, and Choo-won Kim, a graduate student, both in chemical engineering at Cornell. Frey reports on the development Sept. 9 at the annual meeting of the American Chemical Society in New York City.



The technique of electrospinning cellulose on the nanoscale was successfully used for the first time a few months ago. It involves dissolving cellulose in a solvent, squeezing the liquid polymer solution through a tiny pinhole and applying a high voltage to the pinhole. (Nanoscale refers to measurements often at the molecular level; a nanometer is one billionth of a meter, or three times the diameter of a silicon atom.)

"The technique relies on electrical rather than mechanical forces to form fibers. Thus, special properties are required of polymer solutions for electrospinning, including the ability to carry electrical charges," says Frey.

The charge pulls the polymer solution through the air into a tiny fiber, which is collected on an electrical ground, explains Frey. "The fiber produced is less than 100 nanometers in diameter, which is 1,000 times smaller than in conventional spinning," she says. The new technique is now possible because of a new group of solvents that can dissolve cellulose, Frey says. The Cornell researchers currently are using experimental solvents to find one that will produce fibers with superior properties.

Whenever cotton is converted to fabric and garments, fiber (cellulose) is lost to scrap or waste. At present it is largely discarded or used for low-value products, such as cotton balls, yarns and cotton batting.

"Producing a high-performance material from reclaimed cellulose material will increase motivation to recycle these materials at all phases of textile production and remove them from the waste stream," notes Frey. She says that electrospinning typically produces nonwoven mats of nanofibers, which could provide nanoscale pores for industrial filters.

"Producing ultra-small diameter fibers from cellulose could have a wide variety of applications that would exploit the enormous surface area of nonwoven mats of nanofibers and the possibility of controlling the molecular orientation and crystalline structures of nanoscale fibers," says Frey. If successful, possible applications might include air filtration, protective clothing, agricultural nanotechnology and biodegradable nanocomposites.

"Another application we foresee is using the biodegradable electrospun cellulose mats to absorb fertilizers, pesticides and other materials. These materials would then release the materials at a desired time and location, allowing targeted application," says Joo.

While Frey’s group prepared the novel solvents for cellulose, Joo’s group conducted the electrospinning studies.

Frey notes that the United States produces 20 million 480-pound bales of fiber a year; world annual production is 98 million bales. At every step in the process of converting harvested cotton to fabric and garments, some fiber is lost to scrap or waste, Frey says. In opening and cleaning, for example, 4 to 8 percent of the fiber is lost; up to 1 percent is lost during drawing and roving; and up to 20 percent during combing and yarn production.

The research is supported by the New York State College of Human Ecology at Cornell.

Susan S. Lang | Cornell News
Further information:
http://www.news.cornell.edu/releases/Sept03/electrospinning.ACS.ssl.html
http://www.human.cornell.edu/faculty/facultybio.cfm?netid=mfw24&facs=1
http://www.cheme.cornell.edu/peopleevents/faculty/joo/

More articles from Materials Sciences:

nachricht New material could lead to erasable and rewriteable optical chips
07.12.2016 | University of Texas at Austin

nachricht Porous crystalline materials: TU Graz researcher shows method for controlled growth
07.12.2016 | Technische Universität Graz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>