Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Waste fiber can be recycled into valuable products using new technique of electrospinning, Cornell researchers report

11.09.2003


It may soon be possible to produce a low cost, high-value, high-strength fiber from a biodegradable and renewable waste product for air filtration, water filtration and agricultural nanotechnology, report polymer scientists at Cornell University. The achievement is the result of using the recently perfected technique of electrospinning to spin nanofibers from cellulose.

"Cellulose is the most abundant renewable resource polymer on earth. It forms the structure of all plants," says Margaret Frey, an assistant professor of textiles and apparel at Cornell. "Although researchers have predicted that fibers with strength approaching Kevlar could be made from this fiber, no one has yet achieved this. We have developed some new solvents for cellulose, which have allowed us to produce fibers using the technique known as electrospinning."

Frey is collaborating on the research with Yong Joo, an assistant professor, and Choo-won Kim, a graduate student, both in chemical engineering at Cornell. Frey reports on the development Sept. 9 at the annual meeting of the American Chemical Society in New York City.



The technique of electrospinning cellulose on the nanoscale was successfully used for the first time a few months ago. It involves dissolving cellulose in a solvent, squeezing the liquid polymer solution through a tiny pinhole and applying a high voltage to the pinhole. (Nanoscale refers to measurements often at the molecular level; a nanometer is one billionth of a meter, or three times the diameter of a silicon atom.)

"The technique relies on electrical rather than mechanical forces to form fibers. Thus, special properties are required of polymer solutions for electrospinning, including the ability to carry electrical charges," says Frey.

The charge pulls the polymer solution through the air into a tiny fiber, which is collected on an electrical ground, explains Frey. "The fiber produced is less than 100 nanometers in diameter, which is 1,000 times smaller than in conventional spinning," she says. The new technique is now possible because of a new group of solvents that can dissolve cellulose, Frey says. The Cornell researchers currently are using experimental solvents to find one that will produce fibers with superior properties.

Whenever cotton is converted to fabric and garments, fiber (cellulose) is lost to scrap or waste. At present it is largely discarded or used for low-value products, such as cotton balls, yarns and cotton batting.

"Producing a high-performance material from reclaimed cellulose material will increase motivation to recycle these materials at all phases of textile production and remove them from the waste stream," notes Frey. She says that electrospinning typically produces nonwoven mats of nanofibers, which could provide nanoscale pores for industrial filters.

"Producing ultra-small diameter fibers from cellulose could have a wide variety of applications that would exploit the enormous surface area of nonwoven mats of nanofibers and the possibility of controlling the molecular orientation and crystalline structures of nanoscale fibers," says Frey. If successful, possible applications might include air filtration, protective clothing, agricultural nanotechnology and biodegradable nanocomposites.

"Another application we foresee is using the biodegradable electrospun cellulose mats to absorb fertilizers, pesticides and other materials. These materials would then release the materials at a desired time and location, allowing targeted application," says Joo.

While Frey’s group prepared the novel solvents for cellulose, Joo’s group conducted the electrospinning studies.

Frey notes that the United States produces 20 million 480-pound bales of fiber a year; world annual production is 98 million bales. At every step in the process of converting harvested cotton to fabric and garments, some fiber is lost to scrap or waste, Frey says. In opening and cleaning, for example, 4 to 8 percent of the fiber is lost; up to 1 percent is lost during drawing and roving; and up to 20 percent during combing and yarn production.

The research is supported by the New York State College of Human Ecology at Cornell.

Susan S. Lang | Cornell News
Further information:
http://www.news.cornell.edu/releases/Sept03/electrospinning.ACS.ssl.html
http://www.human.cornell.edu/faculty/facultybio.cfm?netid=mfw24&facs=1
http://www.cheme.cornell.edu/peopleevents/faculty/joo/

More articles from Materials Sciences:

nachricht Nagoya University researchers break down plastic waste
29.05.2017 | Nagoya University

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>