Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Waste fiber can be recycled into valuable products using new technique of electrospinning, Cornell researchers report

11.09.2003


It may soon be possible to produce a low cost, high-value, high-strength fiber from a biodegradable and renewable waste product for air filtration, water filtration and agricultural nanotechnology, report polymer scientists at Cornell University. The achievement is the result of using the recently perfected technique of electrospinning to spin nanofibers from cellulose.

"Cellulose is the most abundant renewable resource polymer on earth. It forms the structure of all plants," says Margaret Frey, an assistant professor of textiles and apparel at Cornell. "Although researchers have predicted that fibers with strength approaching Kevlar could be made from this fiber, no one has yet achieved this. We have developed some new solvents for cellulose, which have allowed us to produce fibers using the technique known as electrospinning."

Frey is collaborating on the research with Yong Joo, an assistant professor, and Choo-won Kim, a graduate student, both in chemical engineering at Cornell. Frey reports on the development Sept. 9 at the annual meeting of the American Chemical Society in New York City.



The technique of electrospinning cellulose on the nanoscale was successfully used for the first time a few months ago. It involves dissolving cellulose in a solvent, squeezing the liquid polymer solution through a tiny pinhole and applying a high voltage to the pinhole. (Nanoscale refers to measurements often at the molecular level; a nanometer is one billionth of a meter, or three times the diameter of a silicon atom.)

"The technique relies on electrical rather than mechanical forces to form fibers. Thus, special properties are required of polymer solutions for electrospinning, including the ability to carry electrical charges," says Frey.

The charge pulls the polymer solution through the air into a tiny fiber, which is collected on an electrical ground, explains Frey. "The fiber produced is less than 100 nanometers in diameter, which is 1,000 times smaller than in conventional spinning," she says. The new technique is now possible because of a new group of solvents that can dissolve cellulose, Frey says. The Cornell researchers currently are using experimental solvents to find one that will produce fibers with superior properties.

Whenever cotton is converted to fabric and garments, fiber (cellulose) is lost to scrap or waste. At present it is largely discarded or used for low-value products, such as cotton balls, yarns and cotton batting.

"Producing a high-performance material from reclaimed cellulose material will increase motivation to recycle these materials at all phases of textile production and remove them from the waste stream," notes Frey. She says that electrospinning typically produces nonwoven mats of nanofibers, which could provide nanoscale pores for industrial filters.

"Producing ultra-small diameter fibers from cellulose could have a wide variety of applications that would exploit the enormous surface area of nonwoven mats of nanofibers and the possibility of controlling the molecular orientation and crystalline structures of nanoscale fibers," says Frey. If successful, possible applications might include air filtration, protective clothing, agricultural nanotechnology and biodegradable nanocomposites.

"Another application we foresee is using the biodegradable electrospun cellulose mats to absorb fertilizers, pesticides and other materials. These materials would then release the materials at a desired time and location, allowing targeted application," says Joo.

While Frey’s group prepared the novel solvents for cellulose, Joo’s group conducted the electrospinning studies.

Frey notes that the United States produces 20 million 480-pound bales of fiber a year; world annual production is 98 million bales. At every step in the process of converting harvested cotton to fabric and garments, some fiber is lost to scrap or waste, Frey says. In opening and cleaning, for example, 4 to 8 percent of the fiber is lost; up to 1 percent is lost during drawing and roving; and up to 20 percent during combing and yarn production.

The research is supported by the New York State College of Human Ecology at Cornell.

Susan S. Lang | Cornell News
Further information:
http://www.news.cornell.edu/releases/Sept03/electrospinning.ACS.ssl.html
http://www.human.cornell.edu/faculty/facultybio.cfm?netid=mfw24&facs=1
http://www.cheme.cornell.edu/peopleevents/faculty/joo/

More articles from Materials Sciences:

nachricht Engineers develop smart material that changes stiffness when twisted or bent
15.02.2018 | Iowa State University

nachricht Breaking local symmetry: Why water freezes but silica forms a glass
14.02.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>