Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanometer-sized particles change crystal structure when they get wet

28.08.2003


As scientists shrink materials down to the nanometer scale, creating nanodots, nanoparticles, nanorods and nanotubes a few tens of atoms across, they’ve found weird and puzzling behaviors that have fired their imaginations and promised many unforeseen applications.



Now University of California, Berkeley, scientists have found another unusual effect that could have both good and bad implications for semiconductor devices once they’ve been shrunk to the nanometer scale.

The discovery also could provide a way to tell whether pieces of rock from outer space came from planets with water.


In a paper appearing in the Aug. 28 issue of Nature, a UC Berkeley team comprised of physicists, chemists and mineralogists reports on the unusual behavior of a semiconducting material, zinc sulphide (ZnS), when reduced to pieces only 3 nanometers across - clumps containing only 700 or so atoms.

They found that when the surface of a ZnS nanoparticle gets wet, its entire crystal structure rearranges to become more ordered, closer to the structure of a bulk piece of solid ZnS.

"People had noticed that nanoparticles often had unexpected crystal structures and guessed it might be due to surface effects," said post-doctoral physicist Benjamin Gilbert of UC Berkeley’s Department of Earth & Planetary Science. "This is a clear-cut demonstration that surface effects are important in nanoparticles."

Gilbert and co-author Hengzhong Zhang, a research scientist and physical chemist, suggest that many types of nanoparticles may be as sensitive to water as ZnS.

"We think that, for some systems of small nanoparticles maybe 2 to 3 nanometers across, this kind of structural transition may be common," Zhang said.

"There’s a good and bad side to this," Gilbert added. "If we can control the structure of a nanoparticle through its surface, we can expect to produce a range of structures depending on what molecule is bound to the surface. But this also produces unexpected effects researchers may not want."

In addition, Zhang said these effects could have implications for our understanding of extraterrestrial materials and identification of extraterrestrial rocks, especially when the interpretation is being done by a robotic probe. A nanoparticle that formed in a place with water, such as Earth, would have a more ordered surface than a nanoparticle formed in space, where water is not present.

"Nanoparticles are probably widespread in the cosmos, and their surface environments may vary significantly, such as water versus no water, or the presence of organic molecules," said Jillian Banfield, professor of earth and planetary science at UC Berkeley. Banfield has been looking at microscopic and nanoscale particles in rocks, minerals and the environment in general to determine what information they can provide about their origin.

"As essentially all properties of nanoparticles - including spectroscopic ones often measured in the identification of materials - are structure dependent, and we now know that nanoparticle structure depends on the surface environment, it may be important to know how phase, size, structure, and properties relate so that spectra can be correctly interpreted."

Understanding how the characteristics of specific nanomaterials vary with environment could also lead to their use as sensors, for example, for water.

Some nanoparticles, including ZnS, are produced by microbes as a byproduct of metabolism. Banfield found ZnS in the form of a mineral called sphalerite in an abandoned zinc mine in Wisconsin four years ago, a product of sulphate-reducing bacteria. Numerous bacteria produce magnetite particles, or iron oxide, while Banfield has found others that produce uranium oxide. All these particles are small, ranging from nanometers to microns - millionths of a meter - across.

The trick is to distinguish these biogenic nanoparticles from similar nanoparticles formed by geologic processes. The importance of this issue arose several years ago when small inclusions in a meteorite from Mars were interpreted as being of biological origin by some and of geologic origin by others. Similar ambiguity has arisen over how to interpret small inclusions in rocks dating from the early years of the Earth.

Banfield studies naturally occurring nanoparticles of biologic and geologic origin, as well as synthetic ones, in order to understand how structure, properties, and reactivity vary with particle size. The geochemical consequences of size-dependent phenomena may be far reaching, she said.

Zhang developed molecular dynamics models to study the reaction of ZnS nanoparticles to surface binding, and predicted that nanoparticles grown to around 3 nanometers across would be most sensitive to surface water. Feng "Forrest" Huang, a post-doctoral fellow in the Banfield group, developed a method to make ZnS nanoparticles of that size in a methanol solvent. Zhang and Huang worked with Gilbert to observe the structural transition using synchrotron x-ray techniques.

Within the methanol and after it had evaporated, these three-nanometer particles were found through X-ray diffraction to have a somewhat disordered structure at the surface, with only the core of the nanoparticle exhibiting the regular order of bulk ZnS, which is sometimes used as a semiconductor in specialized photoelectronics applications.

When the methanol was spiked with water, however, the ZnS particles developed a much more ordered structure throughout. Only the immediate surface retained a disordered crystal structure.

The UC Berkeley researchers suggest that nano-ZnS has two or more stable structures, depending on what molecules are stuck to the surface. This is not surprising, Gilbert said, because the surface area of nanoparticles is so large compared to the volume that reactions at the surface are likely to affect the entire nanoparticle. In larger materials, the surface/volume ratio is much less, which means the surface has less effect on the interior of the solid.

The team also was able to demonstrate that the nanoparticles undergo reversible structure transformations at room temperature when removed from the methanol solvent and allowed to dry out. That is, when the dry nanoparticles are again immersed in methanol, they revert to their original structure.

"This result demonstrates that these nanoparticles are not trapped in a metastable state, but can respond to changes in their surface environments," Banfield said.

"To our knowledge, these are the first surface-driven room temperature transitions observed in nanoparticles," she added. "In methanol, the nanoparticles are highly distorted, but water addition removes this distortion. If alternative ligands or solvents can be found that stabilize alternative variants, there may be ways to generate uncommon structures through surface binding after the nanoparticle is synthesized."

The research team plans to continue to investigate how and why the crystal structure of ZnS nanoparticles changes with the surface environment. In particular, they hope to find out how the crystal rearranges itself so easily at room temperature, and how long it takes.

The work was sponsored by the National Science Foundation and the U.S. Department of Energy.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu/

More articles from Materials Sciences:

nachricht Triboelectric nanogenerators boost mass spectrometry performance
28.02.2017 | Georgia Institute of Technology

nachricht Nano 'sandwich' offers unique properties
28.02.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>