Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanometer-sized particles change crystal structure when they get wet

28.08.2003


As scientists shrink materials down to the nanometer scale, creating nanodots, nanoparticles, nanorods and nanotubes a few tens of atoms across, they’ve found weird and puzzling behaviors that have fired their imaginations and promised many unforeseen applications.



Now University of California, Berkeley, scientists have found another unusual effect that could have both good and bad implications for semiconductor devices once they’ve been shrunk to the nanometer scale.

The discovery also could provide a way to tell whether pieces of rock from outer space came from planets with water.


In a paper appearing in the Aug. 28 issue of Nature, a UC Berkeley team comprised of physicists, chemists and mineralogists reports on the unusual behavior of a semiconducting material, zinc sulphide (ZnS), when reduced to pieces only 3 nanometers across - clumps containing only 700 or so atoms.

They found that when the surface of a ZnS nanoparticle gets wet, its entire crystal structure rearranges to become more ordered, closer to the structure of a bulk piece of solid ZnS.

"People had noticed that nanoparticles often had unexpected crystal structures and guessed it might be due to surface effects," said post-doctoral physicist Benjamin Gilbert of UC Berkeley’s Department of Earth & Planetary Science. "This is a clear-cut demonstration that surface effects are important in nanoparticles."

Gilbert and co-author Hengzhong Zhang, a research scientist and physical chemist, suggest that many types of nanoparticles may be as sensitive to water as ZnS.

"We think that, for some systems of small nanoparticles maybe 2 to 3 nanometers across, this kind of structural transition may be common," Zhang said.

"There’s a good and bad side to this," Gilbert added. "If we can control the structure of a nanoparticle through its surface, we can expect to produce a range of structures depending on what molecule is bound to the surface. But this also produces unexpected effects researchers may not want."

In addition, Zhang said these effects could have implications for our understanding of extraterrestrial materials and identification of extraterrestrial rocks, especially when the interpretation is being done by a robotic probe. A nanoparticle that formed in a place with water, such as Earth, would have a more ordered surface than a nanoparticle formed in space, where water is not present.

"Nanoparticles are probably widespread in the cosmos, and their surface environments may vary significantly, such as water versus no water, or the presence of organic molecules," said Jillian Banfield, professor of earth and planetary science at UC Berkeley. Banfield has been looking at microscopic and nanoscale particles in rocks, minerals and the environment in general to determine what information they can provide about their origin.

"As essentially all properties of nanoparticles - including spectroscopic ones often measured in the identification of materials - are structure dependent, and we now know that nanoparticle structure depends on the surface environment, it may be important to know how phase, size, structure, and properties relate so that spectra can be correctly interpreted."

Understanding how the characteristics of specific nanomaterials vary with environment could also lead to their use as sensors, for example, for water.

Some nanoparticles, including ZnS, are produced by microbes as a byproduct of metabolism. Banfield found ZnS in the form of a mineral called sphalerite in an abandoned zinc mine in Wisconsin four years ago, a product of sulphate-reducing bacteria. Numerous bacteria produce magnetite particles, or iron oxide, while Banfield has found others that produce uranium oxide. All these particles are small, ranging from nanometers to microns - millionths of a meter - across.

The trick is to distinguish these biogenic nanoparticles from similar nanoparticles formed by geologic processes. The importance of this issue arose several years ago when small inclusions in a meteorite from Mars were interpreted as being of biological origin by some and of geologic origin by others. Similar ambiguity has arisen over how to interpret small inclusions in rocks dating from the early years of the Earth.

Banfield studies naturally occurring nanoparticles of biologic and geologic origin, as well as synthetic ones, in order to understand how structure, properties, and reactivity vary with particle size. The geochemical consequences of size-dependent phenomena may be far reaching, she said.

Zhang developed molecular dynamics models to study the reaction of ZnS nanoparticles to surface binding, and predicted that nanoparticles grown to around 3 nanometers across would be most sensitive to surface water. Feng "Forrest" Huang, a post-doctoral fellow in the Banfield group, developed a method to make ZnS nanoparticles of that size in a methanol solvent. Zhang and Huang worked with Gilbert to observe the structural transition using synchrotron x-ray techniques.

Within the methanol and after it had evaporated, these three-nanometer particles were found through X-ray diffraction to have a somewhat disordered structure at the surface, with only the core of the nanoparticle exhibiting the regular order of bulk ZnS, which is sometimes used as a semiconductor in specialized photoelectronics applications.

When the methanol was spiked with water, however, the ZnS particles developed a much more ordered structure throughout. Only the immediate surface retained a disordered crystal structure.

The UC Berkeley researchers suggest that nano-ZnS has two or more stable structures, depending on what molecules are stuck to the surface. This is not surprising, Gilbert said, because the surface area of nanoparticles is so large compared to the volume that reactions at the surface are likely to affect the entire nanoparticle. In larger materials, the surface/volume ratio is much less, which means the surface has less effect on the interior of the solid.

The team also was able to demonstrate that the nanoparticles undergo reversible structure transformations at room temperature when removed from the methanol solvent and allowed to dry out. That is, when the dry nanoparticles are again immersed in methanol, they revert to their original structure.

"This result demonstrates that these nanoparticles are not trapped in a metastable state, but can respond to changes in their surface environments," Banfield said.

"To our knowledge, these are the first surface-driven room temperature transitions observed in nanoparticles," she added. "In methanol, the nanoparticles are highly distorted, but water addition removes this distortion. If alternative ligands or solvents can be found that stabilize alternative variants, there may be ways to generate uncommon structures through surface binding after the nanoparticle is synthesized."

The research team plans to continue to investigate how and why the crystal structure of ZnS nanoparticles changes with the surface environment. In particular, they hope to find out how the crystal rearranges itself so easily at room temperature, and how long it takes.

The work was sponsored by the National Science Foundation and the U.S. Department of Energy.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu/

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>