Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electronics sector progresses with breakthroughs in materials science

09.07.2003


Technical Insights Electronics and Semiconductors Industry Impact Research Service: Developments and Opportunities in Advanced Electronic Materials



Materials such as polymers, superconducting ceramics, and diamond films are likely to shape the electronics industry in the coming decade. Processing technologies for these improved materials will also gain importance.

"Advanced materials are synthesized at nano levels, creating the possibility of achieving several new structures and properties, which will enable an endless number of electronic applications," states Technical Insights Analyst Sathyaraj Radhakrishnan.


Nanostructures based on inorganic and organic semiconductors, coupled with complex materials such as polymers will form the building blocks for many future devices and systems.

"Researchers will need capital-intensive, large-scale instrumentation to characterize, synthesize, and process new materials from their smallest constituents and at all scales of assembly," says Radhakrishnan.

Electronics sector advances will depend on the ability to assess life cycle costs, which include materials costs, and overcome stringent management policies and limited investment funding.

Performance optimization, miniaturization, and integration of different classes of materials into multifunctional components are also becoming essential as advanced electronic materials are finding a prominent place in many applications.

Researchers are working on an array of new technologies including elaboration and characterization of very thin dielectrics for gate control, enabling reliance on fewer electron memories, lithographic techniques, and optical interconnects.

Many research frontiers such as synthesis of semi-conducting organic materials, optical conductivity of doped conjugated polymers, holographic data storage, plastic displays, and ferroelectric ceramics are also evolving.

"Multidisciplinary international collaboration is essential to make progress as challenges persist in the form of a choice of substrates, control of dopants, growth techniques to identify native defects, and quantum fluctuations," concludes Radhakrishnan.

New analysis by Technical Insights, a business unit of Frost & Sullivan (www.Technical-Insights.frost.com), Electronics and Semiconductors Industry Impact Research Service: Developments and Opportunities in Advanced Electronic Materials, highlights the remarkable advancements made in this unique and exciting area of research, which will have far-reaching industrial, economic, and societal impact. The analysis also provides valuable information on major market participants, key patents, and various obstacles to commercialization.

Technical Insights will hold a conference call at 1 p.m. (EDT)/ 10 a.m. (PDT) on July 15, 2003 to provide a summary and analysis of the latest developments in advanced electronic materials. Those interested in participating in the call are requested to send e-mail to Julia Paulson at jpaulson@frost.com with the following information for registration:

Full name, Company Name, Title, Contact Tel Number, Contact Fax Number, E-mail. Upon receipt of the above information, a confirmation/pass code for the live briefing will be e-mailed to you.


Frost & Sullivan is a global leader in strategic market consulting and training. Acquired by Frost & Sullivan, Technical Insights is an international technology analysis business that produces a variety of technical news alerts, newsletters, and reports. The ongoing analysis on advanced electronic technologies is covered in Microelectronics Alert, a Technical Insights subscription service. Executive summaries and interviews are available to the press.

Electronics and Semiconductors Industry Impact Research Service: Developments and Opportunities in Advanced Electronic Materials
Report D250

Contact:
USA:
Julia Paulson
P: 210-247-3870
F: 210-348-1003
E: jpaulson@frost.com

APAC:
Pramila Gurtoo
DID: 603-6204-5811
Gen: 603-6204-5800
Fax: 603-6201-7402
E: pgurtoo@frost.com

Julia Paulson | EurekAlert!
Further information:
http://www.ti.frost.com/
http://www.frost.com
http://www.Technical-Insights.frost.com

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>