Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The seashell´s inner beauty

28.05.2003


Scanning electron micrograph of artificial nacre developed by researchers at Oklahoma State University and Digital Instruments/Veeco. One micron is one millionth of a meter.
Credit: Zhiyong Tang, Oklahoma State University; NSF


Photograph depicting artificial nacre and revealing the material’s thin texture and iridescence.
Credit: Zhiyong Tang, Oklahoma State University; NSF


There is more to mother-of-pearl than good looks. Also called nacre, the gleaming, white material is renowned in scientific circles for its strong, yet flexible, properties. Now researchers have developed a nanoscale, layered material that comes close to nacre’s properties, including its iridescence.

The ability to nanomanufacture artificial nacre may provide lightweight, rigid composites for aircraft parts, artificial bone and other applications.

Reporting online in Nature Materials on May 25, Nicholas Kotov and his colleagues at Oklahoma State University and at Digital Instruments/Veeco describe their method for creating nacre-like material that consists of alternating layers of clay and a type of polymer called a polyelectrolyte. Kotov received a National Science Foundation (NSF) CAREER Award to pursue the work.



"The discovery allows researchers to tailor flexible materials to a given application-to get the tough materials that nature has been able to produce," said Lynn Schneemeyer, the NSF program officer who oversees Kotov’s award. NSF is an independent federal agency that supports fundamental research and education across all fields of science and engineering.

Natural nacre owes much of its strength and flexibility to an internal brick-like structure. Protein layers only nanometers (billionths of a meter) thick provide the pliable "mortar," while calcium carbonate, the principal chemical in limestone and antacids, comprises the similarly miniscule "bricks" adding hardness.

In the artificial nacre, platelets of a negatively-charged clay called montmorillonite provide the bricks while fibers of a positively-charged polyelectrolyte called poly(diallydimethylammonium) chloride (PDDA) serve as the mortar. The opposite charges help the two components bond tightly to form the nacre structure.

"The combination of montmorillonite and PDDA for nacre modeling came to us quite naturally," said Kotov. "It was the very first clay-polyelectrolyte system I worked with a few years back." He also states that the montmorillonite has several advantages over other layered minerals, such as talc, including an ability to disperse easily in water, while the PDDA has a high affinity for clays.

Unique "sacrificial bonds" hold the polymer chains to each other in a special way that maintains strength and flexibility. The bond is a result of the polymer interacting with negative charges on the clay surfaces (or, in the case of real nacre, proteins interacting with positive calcium ions).

Such ionic bonds are strong and absorb energy when the artificial nacre is deformed. If the bonds break, they can reform when the stress goes away. They are dubbed "sacrificial" because they take the brunt of an attack, leaving the covalent bonds in the molecules intact.

The artificial nacre was created by immersing a glass slide in alternating baths of clay and polymer. A robotic device performed the 200 dips, with each dip producing several plastic clay layers-each clay and plastic layer is, on average, only 24 nanometers thick.

"It is a very robust preparation and produces beautiful layers every time," said Kotov.

Because of the artificial nacre’s potential for highstrength, protective coatings such as body armor and biocompatible substrates for growing human tissue or organs, Kotov and his colleagues are working with a company to further develop the material and techniques. And, because researchers can easily add new components like ultraviolet light- or corrosion resistant chemicals to the artificial nacre, the same manufacturing process can produce materials for a variety of applications.

Josh Chamot | NSF
Further information:
http://www.nsf.gov
http://www.nsf.gov/od/lpa/news/media/start.htm
http://www.nsf.gov/od/lpa

More articles from Materials Sciences:

nachricht The stacked colour sensor
16.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures
16.11.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>