Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prions offer nanotech building tool

01.04.2003


The same characteristics that make misfolded proteins known as prions such a pernicious medical threat in neurodegenerative diseases may offer a construction toolkit for manufacturing nanoscale electrical circuits, researchers report this week in the online edition of the Proceedings of the National Academy of Sciences.


Scientists working at Whitehead Institute for Biomedical Research and the University of Chicago write that they have used the durable, self-assembling fibers formed by prions as a template on which to deposit electricity-bearing gold and silver, creating electrical wire much thinner than it is possible to make by current mechanical processes.

"Most of the people working on nanocircuits are trying to build them using ’top-down’ fabrication techniques" used in conventional electrical engineering, explained Whitehead Institute Director Susan Lindquist, a co-author of the study. "We thought we’d try a ’bottom-up’ approach, and let molecular self-assembly do the hard work for us."

Construction of nanoscale microcircuits and machines is one of the highly prized goals of nanotechnology. Manufacturing is very tricky at this scale – a nanometer is one-billionth of a meter; a nanometer is to a meter what a small grape would be to the entire Earth. Moreover, these devices depend on nanowires to conduct electricity. So far, the mass production of these tiny wires has stymied researchers. Making very small computers and optical switches, or even biomedical devices that could be inserted into the body, could open up whole new fields of computation and medicine.



Lindquist and her colleagues took a different approach. Rather than building the metal wire itself, they let prions build a very thin fibrous template and then coaxed gold and silver to bond to the protein fibers. By themselves, the fibers are insulators; they can’t conduct electricity. But when coated with gold and silver particles, they became remarkably effective electrical wires.

The choice of prions to build this template was a natural one for Lindquist and her colleagues at the University of Chicago, where she started work on this project before joining Whitehead Institute. Proteins are the cell’s workhorses, and they need to fold into complex and precise shapes to do their jobs. Prions are misfolded proteins – rather like an origami swan that comes out looking and acting instead like an ostrich.

Prions have another characteristic that makes them ideal for the mass-manufacturing jobs researchers have in mind: They recruit other, properly folded proteins into misforming along with them, a process Lindquist calls a "conformational cascade" that ends up producing more and more ostriches instead of swans.

In the test tube, conformational cascade generates strings and strings of tough, durable and heat-resistant protein fibers of a type known as "amyloid". In humans, amyloids are best known as the plaque that gunks up neurons in people with Alzheimer’s, mad cow disease and other neurodegenerative illnesses. This may be one reason why these diseases are so resistant to treatment. However, yeast prions used as the source of protein in these experiments are completely harmless, making them safe to work with in manufacturing.

Lindquist and colleagues used a special genetic variant of yeast they modified to produce fibers capable of bonding with gold particles. They then coated these fiber strings with enough metal to make a working electrical wire.

In all important respects, these nanowires possess the characteristics of conventional solid metal wire, Lindquist explained, such as low resistance to electrical current.

"With materials like these," she noted, "it should be possible to harness the extraordinary diversity and specificity of protein functions to nanoscale electrical circuitry."


The research was supported by the National Institutes of Health, the W.M. Keck Foundation, the University of Chicago Materials Research Science and Engineering Center (MRSEC program of the NSF), the Howard Hughes Medical Institute and a postdoctoral fellowship of the Deutsche Forschungsgemeinschaft (T.S.).




Rick Borchelt | EurekAlert!

More articles from Materials Sciences:

nachricht One in 5 materials chemistry papers may be wrong, study suggests
15.12.2017 | Georgia Institute of Technology

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>