Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prions offer nanotech building tool

01.04.2003


The same characteristics that make misfolded proteins known as prions such a pernicious medical threat in neurodegenerative diseases may offer a construction toolkit for manufacturing nanoscale electrical circuits, researchers report this week in the online edition of the Proceedings of the National Academy of Sciences.


Scientists working at Whitehead Institute for Biomedical Research and the University of Chicago write that they have used the durable, self-assembling fibers formed by prions as a template on which to deposit electricity-bearing gold and silver, creating electrical wire much thinner than it is possible to make by current mechanical processes.

"Most of the people working on nanocircuits are trying to build them using ’top-down’ fabrication techniques" used in conventional electrical engineering, explained Whitehead Institute Director Susan Lindquist, a co-author of the study. "We thought we’d try a ’bottom-up’ approach, and let molecular self-assembly do the hard work for us."

Construction of nanoscale microcircuits and machines is one of the highly prized goals of nanotechnology. Manufacturing is very tricky at this scale – a nanometer is one-billionth of a meter; a nanometer is to a meter what a small grape would be to the entire Earth. Moreover, these devices depend on nanowires to conduct electricity. So far, the mass production of these tiny wires has stymied researchers. Making very small computers and optical switches, or even biomedical devices that could be inserted into the body, could open up whole new fields of computation and medicine.



Lindquist and her colleagues took a different approach. Rather than building the metal wire itself, they let prions build a very thin fibrous template and then coaxed gold and silver to bond to the protein fibers. By themselves, the fibers are insulators; they can’t conduct electricity. But when coated with gold and silver particles, they became remarkably effective electrical wires.

The choice of prions to build this template was a natural one for Lindquist and her colleagues at the University of Chicago, where she started work on this project before joining Whitehead Institute. Proteins are the cell’s workhorses, and they need to fold into complex and precise shapes to do their jobs. Prions are misfolded proteins – rather like an origami swan that comes out looking and acting instead like an ostrich.

Prions have another characteristic that makes them ideal for the mass-manufacturing jobs researchers have in mind: They recruit other, properly folded proteins into misforming along with them, a process Lindquist calls a "conformational cascade" that ends up producing more and more ostriches instead of swans.

In the test tube, conformational cascade generates strings and strings of tough, durable and heat-resistant protein fibers of a type known as "amyloid". In humans, amyloids are best known as the plaque that gunks up neurons in people with Alzheimer’s, mad cow disease and other neurodegenerative illnesses. This may be one reason why these diseases are so resistant to treatment. However, yeast prions used as the source of protein in these experiments are completely harmless, making them safe to work with in manufacturing.

Lindquist and colleagues used a special genetic variant of yeast they modified to produce fibers capable of bonding with gold particles. They then coated these fiber strings with enough metal to make a working electrical wire.

In all important respects, these nanowires possess the characteristics of conventional solid metal wire, Lindquist explained, such as low resistance to electrical current.

"With materials like these," she noted, "it should be possible to harness the extraordinary diversity and specificity of protein functions to nanoscale electrical circuitry."


The research was supported by the National Institutes of Health, the W.M. Keck Foundation, the University of Chicago Materials Research Science and Engineering Center (MRSEC program of the NSF), the Howard Hughes Medical Institute and a postdoctoral fellowship of the Deutsche Forschungsgemeinschaft (T.S.).




Rick Borchelt | EurekAlert!

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

High conductive foils enabling large area lighting

29.06.2017 | Power and Electrical Engineering

Designed proteins to treat muscular dystrophy

29.06.2017 | Life Sciences

Climate Fluctuations & Non-equilibrium Statistical Mechanics: An Interdisciplinary Dialog

29.06.2017 | Seminars Workshops

VideoLinks
B2B-VideoLinks
More VideoLinks >>>