Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prions offer nanotech building tool

01.04.2003


The same characteristics that make misfolded proteins known as prions such a pernicious medical threat in neurodegenerative diseases may offer a construction toolkit for manufacturing nanoscale electrical circuits, researchers report this week in the online edition of the Proceedings of the National Academy of Sciences.


Scientists working at Whitehead Institute for Biomedical Research and the University of Chicago write that they have used the durable, self-assembling fibers formed by prions as a template on which to deposit electricity-bearing gold and silver, creating electrical wire much thinner than it is possible to make by current mechanical processes.

"Most of the people working on nanocircuits are trying to build them using ’top-down’ fabrication techniques" used in conventional electrical engineering, explained Whitehead Institute Director Susan Lindquist, a co-author of the study. "We thought we’d try a ’bottom-up’ approach, and let molecular self-assembly do the hard work for us."

Construction of nanoscale microcircuits and machines is one of the highly prized goals of nanotechnology. Manufacturing is very tricky at this scale – a nanometer is one-billionth of a meter; a nanometer is to a meter what a small grape would be to the entire Earth. Moreover, these devices depend on nanowires to conduct electricity. So far, the mass production of these tiny wires has stymied researchers. Making very small computers and optical switches, or even biomedical devices that could be inserted into the body, could open up whole new fields of computation and medicine.



Lindquist and her colleagues took a different approach. Rather than building the metal wire itself, they let prions build a very thin fibrous template and then coaxed gold and silver to bond to the protein fibers. By themselves, the fibers are insulators; they can’t conduct electricity. But when coated with gold and silver particles, they became remarkably effective electrical wires.

The choice of prions to build this template was a natural one for Lindquist and her colleagues at the University of Chicago, where she started work on this project before joining Whitehead Institute. Proteins are the cell’s workhorses, and they need to fold into complex and precise shapes to do their jobs. Prions are misfolded proteins – rather like an origami swan that comes out looking and acting instead like an ostrich.

Prions have another characteristic that makes them ideal for the mass-manufacturing jobs researchers have in mind: They recruit other, properly folded proteins into misforming along with them, a process Lindquist calls a "conformational cascade" that ends up producing more and more ostriches instead of swans.

In the test tube, conformational cascade generates strings and strings of tough, durable and heat-resistant protein fibers of a type known as "amyloid". In humans, amyloids are best known as the plaque that gunks up neurons in people with Alzheimer’s, mad cow disease and other neurodegenerative illnesses. This may be one reason why these diseases are so resistant to treatment. However, yeast prions used as the source of protein in these experiments are completely harmless, making them safe to work with in manufacturing.

Lindquist and colleagues used a special genetic variant of yeast they modified to produce fibers capable of bonding with gold particles. They then coated these fiber strings with enough metal to make a working electrical wire.

In all important respects, these nanowires possess the characteristics of conventional solid metal wire, Lindquist explained, such as low resistance to electrical current.

"With materials like these," she noted, "it should be possible to harness the extraordinary diversity and specificity of protein functions to nanoscale electrical circuitry."


The research was supported by the National Institutes of Health, the W.M. Keck Foundation, the University of Chicago Materials Research Science and Engineering Center (MRSEC program of the NSF), the Howard Hughes Medical Institute and a postdoctoral fellowship of the Deutsche Forschungsgemeinschaft (T.S.).




Rick Borchelt | EurekAlert!

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>