Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Lab’s Free-Electron Laser explores promise of carbon nanotubes

28.01.2003




Jefferson Lab’s Free-Electron Laser used to explore the fundamental science of how and why nanotubes form, paying close attention to the atomic and molecular details

Scientists and technologists of all stripes are working intensively to explore the possibilities of an extremely strong and versatile cylinder so tiny that millions -- which in bunches look like an ebony snowflake -- could fit easily on the tip of a pin. The objects in question are known as carbon nanotubes, first discovered in 1991 as the elongated form of an all-carbon molecule.

Sometimes called CNTs, nanotubes take up an extremely small space but can connect together materials with different properties, even as their own properties can be adjusted depending on formulation. The tubes’ "aspect ratio" is enormous: that is, they are very long but not wide, and like an ultra-strong rope, can be extended without sacrificing strength. CNTs have potential applications in molecular and quantum computing and as components for microelectromechanical sensors, or MEMS. The tubes could also function as a "lab on a chip," with attached microelectronics and components that could detect toxins and nerve agents in vanishingly small concentrations.



Nanotubes could also lead to an entirely new generation of materials: as strong or stronger than steel, but very lightweight. CNTs are amazingly damage-tolerant, generally displaying nearly total "elastic recovery," even under high-deformation conditions. If bent, buckled or creased the tubes are usually able to reassume their original shape once external stressors are removed.

"Nanotubes take up a very small amount of space but can connect a lot of material together," says Brian Holloway, an assistant professor in the College of William & Mary’s Department of Applied Science. "You can imagine replacing metal components with nanotubes that could weigh maybe a tenth as much. One of the big reasons NASA is interested is obviously because of the cost of getting to space."

A research team led by Holloway is also intrigued by the tubes’ potential. Holloway’s group has used Jefferson Lab’s Free-Electron Laser (FEL) to explore the fundamental science of how and why nanotubes form, paying close attention to the atomic and molecular details. Already, in experiments, the William & Mary/NASA Langley collaboration has produced tubes as good as if not better than those at other laboratories or in industry.

The next step will be to increase quantity while holding costs down, which Holloway believes will be possible using the Lab’s upgrade of the FEL to 10 kilowatts.

"Right now we’re interested in making more nanotubes," Holloway says. "The FEL offers a way to efficiently and cost-effectively make large amounts of high-quality tubes. Nanotubes come in a variety of flavors; the thought is we could eventually control what we call ’tube chiralities,’ [properties like] structure, length and diameter."

The CNT collaboration makes the tubes by striking a metal-impregnated carbon target with FEL light. The laser vaporizes layers of a graphite annulus, essentially a thick ring mounted on a spinning quartz rod. Atoms discharge from the annulus surface, creating a plume, a kind of nanotube "spray." Under the right conditions trillions upon trillions of nanotubes can be so formed within an hour.

Conventional means of nanotube production involves a tabletop laser. In this more traditional manufacturing approach, perhaps 10 milligrams -- about one-tenth of an aspirin-bottle full -- of the tubes can be produced per hour at costs up to $200 per gram. Conversely, with a one-kilowatt FEL, up to two grams per hour, or about 100 times more nanotubes can be made, at a cost of $100 per gram. A 10-kilowatt FEL could radically alter that equation. To that end, Holloway is seeking funding from NASA and the Office of Naval Research for a three-year project whose goal would be to optimize nanotube production with the upgraded FEL in order to manufacture large quantities quickly and cheaply.

According to Gwyn Williams, FEL Basic Research Program manager, researchers are anticipating learning much more about the details of the photochemical processes involved in nanotube production once the new FEL comes back on line in 2003. Demand for the tubes is intense and growing. Whoever finds a way to make them reliably and affordably could reap the rewards, financially and otherwise, as commercial interests beat a figurative path to researchers’ doors.

"A lot of people can make nanotubes. Very few can make grams or kilograms of nanotubes on time scales less than weeks," Holloway points out. "Factors other than price can drive demand. Right now there’s no one who could sell you one kilogram of nanotubes per month all of the same quality, at any price."

Linda Ware | EurekAlert!

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>