Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Create Rare, Large Symmetrical Crystals

18.09.2002



Accident Leads to Important Discovery

Researchers at Rensselaer Polytechnic Institute in Troy, N.Y., have created large symmetrical crystals that rarely occur in nature. These crystals could be harder than conventional engineering materials. The accidental discovery was made during attempts to make superconducting nanostructures with a simple technique used to create carbon nanotubes.

Pulickel Ajayan and Ganapathiraman Ramanath, faculty members in materials science and engineering at Rensselaer, used boron carbide, a common engineering material, in the high-temperature experiment. In the ashes, they discovered large crystals with five-fold crystallographic symmetry.



Nanosize five-fold symmetrical, or icosahedral, crystals are fairly common, but these larger micron-size crystals with five-fold symmetry are rare in nature because their smaller units cannot repeat their pattern infinitely to form space-filling structures. As the nuclei of these crystals grow, the strain on the crystals increases. This causes them to revert to their common bulk crystal structures.

Ajayan believes that the inherent structure of boron carbide, which has icosahedral units in the unit cell, allows the crystals to grow to micron size without the strain. "These crystals are unique due to their high symmetry. Because of the hardness inherent to the crystal structure, we could anticipate a better material for engineering, specifically coatings. It is exciting and fulfilling to find something that is quite rare in nature, although we need to conduct further measurements to understand its potential," Ajayan said.

The researchers, their post-doctoral research associates (Bingqing Wei and Robert Vajtai), and a graduate student (Yung Joon Jung) collaborated with colleagues at the University of Ulm in Germany.
Their research appeared as the cover story in the June 13 issue of the Journal of Physical Chemistry.

Rensselaer Polytechnic Institute, founded in 1824, is the nation’s oldest technological university. The school offers degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of research centers that are characterized by strong industry partnerships. The Institute is especially well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

:Patricia Azriel | EurekAlert!
Further information:
http://www.rpi.edu/dept/NewsComm/

More articles from Materials Sciences:

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

nachricht A rhodium-based catalyst for making organosilicon using less precious metal
22.06.2017 | Tokyo Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>