Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New antibacterial coating may prolong contact lens life

22.08.2002


The hassle of removing and cleaning your contacts every night, or even every month, could become a thing of the past, based on a study involving a new contact lens coating that kills bacteria.



The study involved rabbits. The coating: an extremely thin layer of selenium, a naturally occurring element found in soil, some plants and many foods we eat.

The rabbits showed no ill effects after two consecutive months of wearing the coated lenses, according to Ted Reid, Ph.D., of Texas Tech University Health Sciences Center in Lubbock, Texas, who presented the findings at the 224th national meeting of the American Chemical Society, the world’s largest scientific society.


Selenium, which is essential to our diet and immune system, kills bacteria by forming something called superoxide radicals. "It’s a natural mechanism we use in our body to kill bacteria," Reid emphasized. "That’s why we’ve had these contact lenses on rabbit eyes for two months and seen no affect whatsoever on the eye."

"I’m ready to put them in my eyes right now," Reid declared.

Nearly all extended wear contact lenses require the wearer to remove them at least weekly for cleaning and disinfection. The U.S. Food and Drug Administration (FDA) so far has approved only two brands that can be left in for up to 30 days. The selenium coating would let people keep their contacts in for at least two months, according to Reid.

The selenium coating is only one molecule thick and does not interfere with the ability of the contact lens to let in oxygen, or its prescription, Reid said. Nor is there any leaching of the selenium, he added. Even if it did, it’s not a problem, according to Reid.

"Let’s suppose all the selenium came off. The amount of selenium that’s on this device is probably .01 percent of what you had for lunch. We’re talking miniscule amounts."

Coating the lens is simple, Reid noted. "You just dip the contact lens into the solution, let it set for a few minutes, and it’s attached." So far, his lab has found the coating can stay attached for at least two years.

It might only be a couple of years until selenium-coated contacts are available to consumers, Reid said. More testing needs to be done before the FDA would grant approval for them, he added.

Coatings for contacts are only the tip of the iceberg, Reid pointed out. His research group is investigating several other possible applications for selenium coatings, including prevention of secondary cataracts and inactivation of the AIDS virus.

After cataract surgery, secondary cataracts can form around the new plastic lens that’s inserted in the eye, Reid explained. "Having the selenium on the surface of the lens, the new lens, interferes with the growth factors that promote the growth of those [secondary cataract] cells."

Although very preliminary, attaching selenium to antibody peptides shows potential for AIDS treatment, according to Reid. "We’ve tested it on the AIDS virus and shown that it will inactivate the AIDS virus in culture. We’re also sending some of this back to NIH [National Institutes of Health] and they’re going to be testing it for us." He did not speculate when those test results would be available.


The paper on this research, PMSE 229, will be presented at 2:00 p.m., Wednesday, Aug. 21, at the Westin Copley Place, Essex Northeast, during the symposium, "Synthetic Polymers in Ophthalmology."

Ted Reid, Ph.D., is a professor at Texas Tech University Health Sciences Center, Department of Ophthalmology and Visual Science, in Lubbock, Texas. He also is the vice chairman of the department and its director of ocular cell biology and is the chief science officer of Selenium Technologies Incorporated in Lubbock, Texas.

— Marvin Coyner

Charmayne Marsh | EurekAlert!
Further information:
http://www.acs.org/portal/Chemistry

More articles from Materials Sciences:

nachricht Think laterally to sidestep production problems
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

nachricht Spin current detection in quantum materials unlocks potential for alternative electronics
16.10.2017 | DOE/Oak Ridge National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>