Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop ultra low-cost plastic memory

17.06.2008
Researchers at the Zernike Institute of Advanced Materials at the University of Groningen have developed a technology for a plastic ferro-electric diode which they believe will achieve a breakthrough in the development of ultra low-cost plastic memory material. Their findings will be published in the July edition of Nature Materials, a publication of the leading scientific journal Nature.

The newly developed technology is similar to that used in Flash memory chips. In both cases, the memory retains data without being connected to a power source.

Flash memory chips are used in memory sticks, MP3 players, cellular phones and in the memory cards of digital cameras. The researchers at the Zernike Institute of Advanced Materials expect the new technology to lead to the development of comparable products possibly even more significant.

One product they have in mind is an electronic price tag which could be read radiographically at the cash desk of retail stores, replacing the bar codes currently in use. Another possible application is for the material to be used in packaging material which could warn consumers when a product is nearing its expiration date.

Plastic transistor
In 2005, a joint team of researchers from the University of Groningen and Philips already successfully integrated a ferro-electric polymer into a plastic transistor. Because the ferro-electric material can be switched between two different stable states through the use of a voltage pulse, it operates as a ‘non-volatile’ memory (meaning that the material retains data without being connected to a power source). The disadvantage of such a transistor is that three connections are needed for programming and reading out the memory, complicating the fabrication. The challenge was therefore to realize comparable functionality within a memory component carrying only two connections: a diode.
Ferro-electric diode
The breakthrough was accomplished during the research project of PhD student Kamal Asadi, which was financed by the University of Groningen. It is based on a radically new concept: instead of stacking a layer of semiconducting material on a layer of ferro-electric material, a mixture of these two materials is used. The ferro-electric characteristic of the mixture is then used to direct current through the semi-conducting part of the mixture.

The new memory diode can be programmed quickly, retains data for a long time and operates at room temperature. The voltages needed for programming are low enough for the diode to be used in commercial applications and the material can be manufactured at low cost using large-scale industrial production techniques. The University of Groningen has obtained a patent on the new material.

Eelco Salverda | alfa
Further information:
http://www.nature.com/naturematerials
http://www.rug.nl

More articles from Materials Sciences:

nachricht Breaking bad metals with neutrons
16.01.2018 | DOE/Argonne National Laboratory

nachricht White graphene makes ceramics multifunctional
16.01.2018 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>