Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ICAMS officially opened at Ruhr University: Materials research center starts work

06.06.2008
ICAMS officially opened at Ruhr University
Materials research center starts work
Key impetus to North Rhine-Westphalia as a center for materials

ICAMS, the Interdisciplinary Centre for Advanced Materials Simulation, was officially opened today at the Ruhr University with an inauguration ceremony and podium discussion.

“For us as a steel producer in North Rhine-Westphalia, the opening of this institute is a groundbreaking event,” said Dr. Karl-Ulrich Köhler, Executive Board Chairman of ThyssenKrupp Steel AG and member of the Executive Board of ThyssenKrupp AG. ThyssenKrupp is the lead company in an industrial consortium (also including Bayer MaterialScience and Bayer Technology Services, Salzgitter Mannesmann Forschung and Bosch) which is providing half of the 24 million euro start-up financing for ICAMS. The other half is being provided by the state of North Rhine-Westphalia.

ICAMS will use multi-scale computer simulation to develop new materials – an approach which combines the previously separate worlds of natural science and engineering science. “To become Germany’s number 1 state for innovation, we need outstanding research in forward-looking fields,” said North Rhine-Westphalia’s Innovation Minister Prof. Dr. Andreas Pinkwart. “ICAMS is a prime example of this.” The Rector of Ruhr University Bochum Prof. Dr. Elmar Weiler underlined the central importance of ICAMS for the future concept of the university and thanked all its supporters: “We are extremely grateful to our partners for their vision and courage to break new ground.”

No innovation without innovative materials

Innovative products would be virtually inconceivable without new materials and materials with tailored properties. For example: to develop cars which are fuel-efficient and safe, the automotive industry needs high-strength steels for lighter designs. One problem with describing real materials is the high spatial and chemical complexity of these structures on widely varying length, time and energy scales. There is still a tendency to regard components mainly as homogeneous units. But to find out what happens inside the material under mechanical loads, the microstructure has to be taken into account, made up of individual atoms, crystallites and their interfaces and defects. Simulations make it possible to develop new materials and to realistically predict and better understand the properties of new metallic alloys, ceramics, glasses or plastics.

Uniting separate worlds

Whereas in the past work in the atomic range (typically 0.1 to 10 nanometers) tended to fall into the realm of the natural sciences, and engineering scientists were more interested in macroscopic properties (from 0.1 mm upwards), both groups will work together in ICAMS on a multi-scale basis. Key areas of work at ICAMS will focus on: 1. the properties of interfaces and layer adhesion, 2. processes taking place inside the material during heavy forming operations, such as during the stamping or rolling of metal, and 3. the influence of alloying elements on the properties of steel. The three endowed professors at ICAMS – Prof. Dr. Ralf Drautz, Prof. Dr. Alexander Hartmaier, Prof. Dr. Ingo Steinbach – and their teams will also collaborate with experimental facilities of other chairs at the Ruhr University Bochum and with researchers from the chemistry, mathematics, mechanical engineering and physics faculties. In addition to research, ICAMS will also enhance the teaching of material sciences. “The fact that today the multi-scale modeling of materials still means tearing down barriers between traditional disciplines also means that there are not yet any engineers who have been taught to derive and understand properties of materials from their atomic structures,” said ICAMS founding director. Dr. Ralf Drautz. “We’ll be creating a new masters degree course to educate a new generation of material engineers who will grow up in a multi-scale world rather than restricting their focus to just one discipline.”

Central element of RUB future concept

As part of one of two “research clusters”, the materials research center is a central element of the future concept of Ruhr University Bochum, which has already been praised by international experts in the university’s application for funding under the government’s “Initiative for Excellence” program and is now being implemented with funds from the Mercator Foundation and the state of NRW among others. “At RUB, ICAMS stands for the pursuit of two major strategic lines under our future concept: on the one hand the clear focus on key areas in research, and on the other cooperation with external partners,” said Rector Weiler. ICAMS works together with partners from the area of research (Max-Planck-Institut für Eisenforschung, RWTH Aachen and Forschungszentrum Jülich) and is funded by an industrial consortium (ThyssenKrupp, Bayer MaterialScience, Bayer Technology Services, Salzgitter Mannesmann, Bosch).

Research center of international caliber in NRW

ICAMS has been designed as a competitive research center of international caliber for materials modeling. “At ThyssenKrupp Steel, we are firmly convinced that advanced materials simulation is a key technology for materials development,” said Dr. Köhler, CEO of ThyssenKrupp Steel AG. “ICAMS will strengthen the innovativeness of our companies and enhance the importance of North Rhine-Westphalia as a center for materials. The work performed at ICAMS will have an impact that goes well beyond pure materials development. New materials drive innovative developments in other key areas such as the automotive, environmental, energy and manufacturing sectors.” And Prof. Martin Stratmann, Managing Director of MPI-Eisenforschung, underlines this: “ICAMS will take us closer to designed materials – the dream of many materials engineers to create modern materials ‘on the drawing board’. ICAMS will allow us to overcome entrenched ways of thinking in university teaching and stands for cooperation between universities, research institutions and business in the pursuit of excellence.”

Prof. Dr. Ralf Drautz | alfa
Further information:
http://www.pm.rub.de/pm2008/msg00174.htm

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>