Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ICAMS officially opened at Ruhr University: Materials research center starts work

06.06.2008
ICAMS officially opened at Ruhr University
Materials research center starts work
Key impetus to North Rhine-Westphalia as a center for materials

ICAMS, the Interdisciplinary Centre for Advanced Materials Simulation, was officially opened today at the Ruhr University with an inauguration ceremony and podium discussion.

“For us as a steel producer in North Rhine-Westphalia, the opening of this institute is a groundbreaking event,” said Dr. Karl-Ulrich Köhler, Executive Board Chairman of ThyssenKrupp Steel AG and member of the Executive Board of ThyssenKrupp AG. ThyssenKrupp is the lead company in an industrial consortium (also including Bayer MaterialScience and Bayer Technology Services, Salzgitter Mannesmann Forschung and Bosch) which is providing half of the 24 million euro start-up financing for ICAMS. The other half is being provided by the state of North Rhine-Westphalia.

ICAMS will use multi-scale computer simulation to develop new materials – an approach which combines the previously separate worlds of natural science and engineering science. “To become Germany’s number 1 state for innovation, we need outstanding research in forward-looking fields,” said North Rhine-Westphalia’s Innovation Minister Prof. Dr. Andreas Pinkwart. “ICAMS is a prime example of this.” The Rector of Ruhr University Bochum Prof. Dr. Elmar Weiler underlined the central importance of ICAMS for the future concept of the university and thanked all its supporters: “We are extremely grateful to our partners for their vision and courage to break new ground.”

No innovation without innovative materials

Innovative products would be virtually inconceivable without new materials and materials with tailored properties. For example: to develop cars which are fuel-efficient and safe, the automotive industry needs high-strength steels for lighter designs. One problem with describing real materials is the high spatial and chemical complexity of these structures on widely varying length, time and energy scales. There is still a tendency to regard components mainly as homogeneous units. But to find out what happens inside the material under mechanical loads, the microstructure has to be taken into account, made up of individual atoms, crystallites and their interfaces and defects. Simulations make it possible to develop new materials and to realistically predict and better understand the properties of new metallic alloys, ceramics, glasses or plastics.

Uniting separate worlds

Whereas in the past work in the atomic range (typically 0.1 to 10 nanometers) tended to fall into the realm of the natural sciences, and engineering scientists were more interested in macroscopic properties (from 0.1 mm upwards), both groups will work together in ICAMS on a multi-scale basis. Key areas of work at ICAMS will focus on: 1. the properties of interfaces and layer adhesion, 2. processes taking place inside the material during heavy forming operations, such as during the stamping or rolling of metal, and 3. the influence of alloying elements on the properties of steel. The three endowed professors at ICAMS – Prof. Dr. Ralf Drautz, Prof. Dr. Alexander Hartmaier, Prof. Dr. Ingo Steinbach – and their teams will also collaborate with experimental facilities of other chairs at the Ruhr University Bochum and with researchers from the chemistry, mathematics, mechanical engineering and physics faculties. In addition to research, ICAMS will also enhance the teaching of material sciences. “The fact that today the multi-scale modeling of materials still means tearing down barriers between traditional disciplines also means that there are not yet any engineers who have been taught to derive and understand properties of materials from their atomic structures,” said ICAMS founding director. Dr. Ralf Drautz. “We’ll be creating a new masters degree course to educate a new generation of material engineers who will grow up in a multi-scale world rather than restricting their focus to just one discipline.”

Central element of RUB future concept

As part of one of two “research clusters”, the materials research center is a central element of the future concept of Ruhr University Bochum, which has already been praised by international experts in the university’s application for funding under the government’s “Initiative for Excellence” program and is now being implemented with funds from the Mercator Foundation and the state of NRW among others. “At RUB, ICAMS stands for the pursuit of two major strategic lines under our future concept: on the one hand the clear focus on key areas in research, and on the other cooperation with external partners,” said Rector Weiler. ICAMS works together with partners from the area of research (Max-Planck-Institut für Eisenforschung, RWTH Aachen and Forschungszentrum Jülich) and is funded by an industrial consortium (ThyssenKrupp, Bayer MaterialScience, Bayer Technology Services, Salzgitter Mannesmann, Bosch).

Research center of international caliber in NRW

ICAMS has been designed as a competitive research center of international caliber for materials modeling. “At ThyssenKrupp Steel, we are firmly convinced that advanced materials simulation is a key technology for materials development,” said Dr. Köhler, CEO of ThyssenKrupp Steel AG. “ICAMS will strengthen the innovativeness of our companies and enhance the importance of North Rhine-Westphalia as a center for materials. The work performed at ICAMS will have an impact that goes well beyond pure materials development. New materials drive innovative developments in other key areas such as the automotive, environmental, energy and manufacturing sectors.” And Prof. Martin Stratmann, Managing Director of MPI-Eisenforschung, underlines this: “ICAMS will take us closer to designed materials – the dream of many materials engineers to create modern materials ‘on the drawing board’. ICAMS will allow us to overcome entrenched ways of thinking in university teaching and stands for cooperation between universities, research institutions and business in the pursuit of excellence.”

Prof. Dr. Ralf Drautz | alfa
Further information:
http://www.pm.rub.de/pm2008/msg00174.htm

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>