Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ICAMS officially opened at Ruhr University: Materials research center starts work

06.06.2008
ICAMS officially opened at Ruhr University
Materials research center starts work
Key impetus to North Rhine-Westphalia as a center for materials

ICAMS, the Interdisciplinary Centre for Advanced Materials Simulation, was officially opened today at the Ruhr University with an inauguration ceremony and podium discussion.

“For us as a steel producer in North Rhine-Westphalia, the opening of this institute is a groundbreaking event,” said Dr. Karl-Ulrich Köhler, Executive Board Chairman of ThyssenKrupp Steel AG and member of the Executive Board of ThyssenKrupp AG. ThyssenKrupp is the lead company in an industrial consortium (also including Bayer MaterialScience and Bayer Technology Services, Salzgitter Mannesmann Forschung and Bosch) which is providing half of the 24 million euro start-up financing for ICAMS. The other half is being provided by the state of North Rhine-Westphalia.

ICAMS will use multi-scale computer simulation to develop new materials – an approach which combines the previously separate worlds of natural science and engineering science. “To become Germany’s number 1 state for innovation, we need outstanding research in forward-looking fields,” said North Rhine-Westphalia’s Innovation Minister Prof. Dr. Andreas Pinkwart. “ICAMS is a prime example of this.” The Rector of Ruhr University Bochum Prof. Dr. Elmar Weiler underlined the central importance of ICAMS for the future concept of the university and thanked all its supporters: “We are extremely grateful to our partners for their vision and courage to break new ground.”

No innovation without innovative materials

Innovative products would be virtually inconceivable without new materials and materials with tailored properties. For example: to develop cars which are fuel-efficient and safe, the automotive industry needs high-strength steels for lighter designs. One problem with describing real materials is the high spatial and chemical complexity of these structures on widely varying length, time and energy scales. There is still a tendency to regard components mainly as homogeneous units. But to find out what happens inside the material under mechanical loads, the microstructure has to be taken into account, made up of individual atoms, crystallites and their interfaces and defects. Simulations make it possible to develop new materials and to realistically predict and better understand the properties of new metallic alloys, ceramics, glasses or plastics.

Uniting separate worlds

Whereas in the past work in the atomic range (typically 0.1 to 10 nanometers) tended to fall into the realm of the natural sciences, and engineering scientists were more interested in macroscopic properties (from 0.1 mm upwards), both groups will work together in ICAMS on a multi-scale basis. Key areas of work at ICAMS will focus on: 1. the properties of interfaces and layer adhesion, 2. processes taking place inside the material during heavy forming operations, such as during the stamping or rolling of metal, and 3. the influence of alloying elements on the properties of steel. The three endowed professors at ICAMS – Prof. Dr. Ralf Drautz, Prof. Dr. Alexander Hartmaier, Prof. Dr. Ingo Steinbach – and their teams will also collaborate with experimental facilities of other chairs at the Ruhr University Bochum and with researchers from the chemistry, mathematics, mechanical engineering and physics faculties. In addition to research, ICAMS will also enhance the teaching of material sciences. “The fact that today the multi-scale modeling of materials still means tearing down barriers between traditional disciplines also means that there are not yet any engineers who have been taught to derive and understand properties of materials from their atomic structures,” said ICAMS founding director. Dr. Ralf Drautz. “We’ll be creating a new masters degree course to educate a new generation of material engineers who will grow up in a multi-scale world rather than restricting their focus to just one discipline.”

Central element of RUB future concept

As part of one of two “research clusters”, the materials research center is a central element of the future concept of Ruhr University Bochum, which has already been praised by international experts in the university’s application for funding under the government’s “Initiative for Excellence” program and is now being implemented with funds from the Mercator Foundation and the state of NRW among others. “At RUB, ICAMS stands for the pursuit of two major strategic lines under our future concept: on the one hand the clear focus on key areas in research, and on the other cooperation with external partners,” said Rector Weiler. ICAMS works together with partners from the area of research (Max-Planck-Institut für Eisenforschung, RWTH Aachen and Forschungszentrum Jülich) and is funded by an industrial consortium (ThyssenKrupp, Bayer MaterialScience, Bayer Technology Services, Salzgitter Mannesmann, Bosch).

Research center of international caliber in NRW

ICAMS has been designed as a competitive research center of international caliber for materials modeling. “At ThyssenKrupp Steel, we are firmly convinced that advanced materials simulation is a key technology for materials development,” said Dr. Köhler, CEO of ThyssenKrupp Steel AG. “ICAMS will strengthen the innovativeness of our companies and enhance the importance of North Rhine-Westphalia as a center for materials. The work performed at ICAMS will have an impact that goes well beyond pure materials development. New materials drive innovative developments in other key areas such as the automotive, environmental, energy and manufacturing sectors.” And Prof. Martin Stratmann, Managing Director of MPI-Eisenforschung, underlines this: “ICAMS will take us closer to designed materials – the dream of many materials engineers to create modern materials ‘on the drawing board’. ICAMS will allow us to overcome entrenched ways of thinking in university teaching and stands for cooperation between universities, research institutions and business in the pursuit of excellence.”

Prof. Dr. Ralf Drautz | alfa
Further information:
http://www.pm.rub.de/pm2008/msg00174.htm

More articles from Materials Sciences:

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>