Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ICAMS officially opened at Ruhr University: Materials research center starts work

06.06.2008
ICAMS officially opened at Ruhr University
Materials research center starts work
Key impetus to North Rhine-Westphalia as a center for materials

ICAMS, the Interdisciplinary Centre for Advanced Materials Simulation, was officially opened today at the Ruhr University with an inauguration ceremony and podium discussion.

“For us as a steel producer in North Rhine-Westphalia, the opening of this institute is a groundbreaking event,” said Dr. Karl-Ulrich Köhler, Executive Board Chairman of ThyssenKrupp Steel AG and member of the Executive Board of ThyssenKrupp AG. ThyssenKrupp is the lead company in an industrial consortium (also including Bayer MaterialScience and Bayer Technology Services, Salzgitter Mannesmann Forschung and Bosch) which is providing half of the 24 million euro start-up financing for ICAMS. The other half is being provided by the state of North Rhine-Westphalia.

ICAMS will use multi-scale computer simulation to develop new materials – an approach which combines the previously separate worlds of natural science and engineering science. “To become Germany’s number 1 state for innovation, we need outstanding research in forward-looking fields,” said North Rhine-Westphalia’s Innovation Minister Prof. Dr. Andreas Pinkwart. “ICAMS is a prime example of this.” The Rector of Ruhr University Bochum Prof. Dr. Elmar Weiler underlined the central importance of ICAMS for the future concept of the university and thanked all its supporters: “We are extremely grateful to our partners for their vision and courage to break new ground.”

No innovation without innovative materials

Innovative products would be virtually inconceivable without new materials and materials with tailored properties. For example: to develop cars which are fuel-efficient and safe, the automotive industry needs high-strength steels for lighter designs. One problem with describing real materials is the high spatial and chemical complexity of these structures on widely varying length, time and energy scales. There is still a tendency to regard components mainly as homogeneous units. But to find out what happens inside the material under mechanical loads, the microstructure has to be taken into account, made up of individual atoms, crystallites and their interfaces and defects. Simulations make it possible to develop new materials and to realistically predict and better understand the properties of new metallic alloys, ceramics, glasses or plastics.

Uniting separate worlds

Whereas in the past work in the atomic range (typically 0.1 to 10 nanometers) tended to fall into the realm of the natural sciences, and engineering scientists were more interested in macroscopic properties (from 0.1 mm upwards), both groups will work together in ICAMS on a multi-scale basis. Key areas of work at ICAMS will focus on: 1. the properties of interfaces and layer adhesion, 2. processes taking place inside the material during heavy forming operations, such as during the stamping or rolling of metal, and 3. the influence of alloying elements on the properties of steel. The three endowed professors at ICAMS – Prof. Dr. Ralf Drautz, Prof. Dr. Alexander Hartmaier, Prof. Dr. Ingo Steinbach – and their teams will also collaborate with experimental facilities of other chairs at the Ruhr University Bochum and with researchers from the chemistry, mathematics, mechanical engineering and physics faculties. In addition to research, ICAMS will also enhance the teaching of material sciences. “The fact that today the multi-scale modeling of materials still means tearing down barriers between traditional disciplines also means that there are not yet any engineers who have been taught to derive and understand properties of materials from their atomic structures,” said ICAMS founding director. Dr. Ralf Drautz. “We’ll be creating a new masters degree course to educate a new generation of material engineers who will grow up in a multi-scale world rather than restricting their focus to just one discipline.”

Central element of RUB future concept

As part of one of two “research clusters”, the materials research center is a central element of the future concept of Ruhr University Bochum, which has already been praised by international experts in the university’s application for funding under the government’s “Initiative for Excellence” program and is now being implemented with funds from the Mercator Foundation and the state of NRW among others. “At RUB, ICAMS stands for the pursuit of two major strategic lines under our future concept: on the one hand the clear focus on key areas in research, and on the other cooperation with external partners,” said Rector Weiler. ICAMS works together with partners from the area of research (Max-Planck-Institut für Eisenforschung, RWTH Aachen and Forschungszentrum Jülich) and is funded by an industrial consortium (ThyssenKrupp, Bayer MaterialScience, Bayer Technology Services, Salzgitter Mannesmann, Bosch).

Research center of international caliber in NRW

ICAMS has been designed as a competitive research center of international caliber for materials modeling. “At ThyssenKrupp Steel, we are firmly convinced that advanced materials simulation is a key technology for materials development,” said Dr. Köhler, CEO of ThyssenKrupp Steel AG. “ICAMS will strengthen the innovativeness of our companies and enhance the importance of North Rhine-Westphalia as a center for materials. The work performed at ICAMS will have an impact that goes well beyond pure materials development. New materials drive innovative developments in other key areas such as the automotive, environmental, energy and manufacturing sectors.” And Prof. Martin Stratmann, Managing Director of MPI-Eisenforschung, underlines this: “ICAMS will take us closer to designed materials – the dream of many materials engineers to create modern materials ‘on the drawing board’. ICAMS will allow us to overcome entrenched ways of thinking in university teaching and stands for cooperation between universities, research institutions and business in the pursuit of excellence.”

Prof. Dr. Ralf Drautz | alfa
Further information:
http://www.pm.rub.de/pm2008/msg00174.htm

More articles from Materials Sciences:

nachricht New concept for structural colors
18.05.2018 | Technische Universität Hamburg-Harburg

nachricht Saarbrücken mathematicians study the cooling of heavy plate from Dillingen
17.05.2018 | Universität des Saarlandes

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>