Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exotic material keeps frustrated electrons flipping

13.02.2008
RIKEN scientists have discovered a new state of matter with unusual magnetic properties—its constituent electrons are in a continuous state of flux, even at incredibly cold temperatures.

Magnetic, temperature and structural studies have yielded new insights on the material sodium iridium oxide

RIKEN scientists have discovered a new state of matter with unusual magnetic properties—its constituent electrons are in a continuous state of flux, even at incredibly cold temperatures.

As electrons spin, they generate a magnetic field which can point ‘up’ or ‘down’. Within solid materials, an electron will generally try to adopt the opposite spin orientation to its neighbor, just as two bar magnets will flip around so that north and south poles line up next to each other.

In more common lattice structures, where atoms stack up like oranges on a greengrocers stall, it’s easy for electrons to achieve this ordered arrangement. But in certain materials, the arrangement of atoms can make it impossible for the electrons to line up with all of their neighbors, and they are said to be ‘frustrated’.

One example of a frustrated material contains a network of atoms arranged into corner-sharing triangles. This is called a kagome structure after a type of Japanese basket that has the same pattern (Fig. 1).

The electrons’ response to this frustration is to constantly flip their magnetic fields to reduce the repulsion between them. In this ‘quantum spin-liquid state’, the quantum effect is expected to stop flipping electrons from freezing out into a static arrangement even at absolute zero (-273.15 ˚C—the coldest temperature possible). Several materials have been claimed to contain possible quantum spin-liquid states, but none have been confirmed.

Hidenori Takagi and Yoshihiko Okamoto of RIKEN’s Discovery Research Institute, Wako, and colleagues, have now found that sodium iridium oxide (Na4Ir3O8) exhibits quantum spin-liquid behavior, even when cooled to -271 ˚C. This was confirmed by magnetic, temperature and structural studies, involving both neutron and x-ray diffraction.

The material contains a network of iridium atoms that form a three-dimensional pattern of corner-shared triangles—dubbed a hyperkagome lattice (Fig. 2), which can be viewed as a slightly twisted—but different structure—to the kagome structure, explains Takagi. Theoretical calculations are consistent with this type of structure showing spin-liquid behavior.

“We believe it is the strongest candidate [for a quantum spin liquid],” says Takagi.

The scientists say that the material is “a fascinating playground for quantum magnetism”, and now hope to study the spin-liquid state further. This should to help build up a detailed description of the phenomenon using quantum theory, describing on a subatomic level exactly how the spinning electrons interact with each other.

1. Okamoto, Y., Nohara, M., Aruga-Katori, H. & Takagi, H. Spin-liquid state in the S = 1/2 hyperkagome antiferromagnet Na4Ir3O8. Physical Review Letters 99, 137207 (2007).

Saeko Okada | ResearchSEA
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Thanks for the memory: NIST takes a deep look at memristors
22.01.2018 | National Institute of Standards and Technology (NIST)

nachricht Let the good tubes roll
19.01.2018 | DOE/Pacific Northwest National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>