Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exotic material keeps frustrated electrons flipping

13.02.2008
RIKEN scientists have discovered a new state of matter with unusual magnetic properties—its constituent electrons are in a continuous state of flux, even at incredibly cold temperatures.

Magnetic, temperature and structural studies have yielded new insights on the material sodium iridium oxide

RIKEN scientists have discovered a new state of matter with unusual magnetic properties—its constituent electrons are in a continuous state of flux, even at incredibly cold temperatures.

As electrons spin, they generate a magnetic field which can point ‘up’ or ‘down’. Within solid materials, an electron will generally try to adopt the opposite spin orientation to its neighbor, just as two bar magnets will flip around so that north and south poles line up next to each other.

In more common lattice structures, where atoms stack up like oranges on a greengrocers stall, it’s easy for electrons to achieve this ordered arrangement. But in certain materials, the arrangement of atoms can make it impossible for the electrons to line up with all of their neighbors, and they are said to be ‘frustrated’.

One example of a frustrated material contains a network of atoms arranged into corner-sharing triangles. This is called a kagome structure after a type of Japanese basket that has the same pattern (Fig. 1).

The electrons’ response to this frustration is to constantly flip their magnetic fields to reduce the repulsion between them. In this ‘quantum spin-liquid state’, the quantum effect is expected to stop flipping electrons from freezing out into a static arrangement even at absolute zero (-273.15 ˚C—the coldest temperature possible). Several materials have been claimed to contain possible quantum spin-liquid states, but none have been confirmed.

Hidenori Takagi and Yoshihiko Okamoto of RIKEN’s Discovery Research Institute, Wako, and colleagues, have now found that sodium iridium oxide (Na4Ir3O8) exhibits quantum spin-liquid behavior, even when cooled to -271 ˚C. This was confirmed by magnetic, temperature and structural studies, involving both neutron and x-ray diffraction.

The material contains a network of iridium atoms that form a three-dimensional pattern of corner-shared triangles—dubbed a hyperkagome lattice (Fig. 2), which can be viewed as a slightly twisted—but different structure—to the kagome structure, explains Takagi. Theoretical calculations are consistent with this type of structure showing spin-liquid behavior.

“We believe it is the strongest candidate [for a quantum spin liquid],” says Takagi.

The scientists say that the material is “a fascinating playground for quantum magnetism”, and now hope to study the spin-liquid state further. This should to help build up a detailed description of the phenomenon using quantum theory, describing on a subatomic level exactly how the spinning electrons interact with each other.

1. Okamoto, Y., Nohara, M., Aruga-Katori, H. & Takagi, H. Spin-liquid state in the S = 1/2 hyperkagome antiferromagnet Na4Ir3O8. Physical Review Letters 99, 137207 (2007).

Saeko Okada | ResearchSEA
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>