Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Redesigned Material Could Lead to Lighter, Faster Electronics

12.04.2013
Thin Layer of Germanium May Replace Silicon in Semiconductors

The same material that formed the first primitive transistors more than 60 years ago can be modified in a new way to advance future electronics, according to a new study.

Chemists at The Ohio State University have developed the technology for making a one-atom-thick sheet of germanium, and found that it conducts electrons more than ten times faster than silicon and five times faster than conventional germanium.

The material’s structure is closely related to that of graphene—a much-touted two-dimensional material comprised of single layers of carbon atoms. As such, graphene shows unique properties compared to its more common multilayered counterpart, graphite. Graphene has yet to be used commercially, but experts have suggested that it could one day form faster computer chips, and maybe even function as a superconductor, so many labs are working to develop it.

Joshua Goldberger, assistant professor of chemistry at Ohio State, decided to take a different direction and focus on more traditional materials.

“Most people think of graphene as the electronic material of the future,” Goldberger said. “But silicon and germanium are still the materials of the present. Sixty years’ worth of brainpower has gone into developing techniques to make chips out of them. So we’ve been searching for unique forms of silicon and germanium with advantageous properties, to get the benefits of a new material but with less cost and using existing technology.”

In a paper published online in the journal ACS Nano, he and his colleagues describe how they were able to create a stable, single layer of germanium atoms. In this form, the crystalline material is called germanane.

Researchers have tried to create germanane before. This is the first time anyone has succeeded at growing sufficient quantities of it to measure the material’s properties in detail, and demonstrate that it is stable when exposed to air and water.

In nature, germanium tends to form multilayered crystals in which each atomic layer is bonded together; the single-atom layer is normally unstable. To get around this problem, Goldberger’s team created multi-layered germanium crystals with calcium atoms wedged between the layers. Then they dissolved away the calcium with water, and plugged the empty chemical bonds that were left behind with hydrogen. The result: they were able to peel off individual layers of germanane.

Studded with hydrogen atoms, germanane is even more chemically stable than traditional silicon. It won’t oxidize in air and water, as silicon does. That makes germanane easy to work with using conventional chip manufacturing techniques.

The primary thing that makes germanane desirable for optoelectronics is that it has what scientists call a “direct band gap,” meaning that light is easily absorbed or emitted. Materials such as conventional silicon and germanium have indirect band gaps, meaning that it is much more difficult for the material to absorb or emit light.

“When you try to use a material with an indirect band gap on a solar cell, you have to make it pretty thick if you want enough energy to pass through it to be useful. A material with a direct band gap can do the same job with a piece of material 100 times thinner,” Goldberger said.

The first-ever transistors were crafted from germanium in the late 1940s, and they were about the size of a thumbnail. Though transistors have grown microscopic since then—with millions of them packed into every computer chip—germanium still holds potential to advance electronics, the study showed.

According to the researchers’ calculations, electrons can move through germanane ten times faster through silicon, and five times faster than through conventional germanium. The speed measurement is called electron mobility.

With its high mobility, germanane could thus carry the increased load in future high-powered computer chips.

“Mobility is important, because faster computer chips can only be made with faster mobility materials,” Golberger said. “When you shrink transistors down to small scales, you need to use higher mobility materials or the transistors will just not work,” Goldberger explained.

Next, the team is going to explore how to tune the properties of germanane by changing the configuration of the atoms in the single layer.

Lead author of the paper was Ohio State undergraduate chemistry student Elizabeth Bianco, who recently won the first place award for this research at the nationwide nanotechnology competition NDConnect, hosted by the University of Notre Dame. Other co-authors included Sheneve Butler and Shishi Jiang of the Department of Chemistry and Biochemistry, and Oscar Restrepo and Wolfgang Windl of the Department of Materials Science and Engineering.

The research was supported in part by an allocation of computing time from the Ohio Supercomputing Center, with instrumentation provided by the Analytical Surface Facility in the Department of Chemistry and Biochemistry and the Ohio State University Undergraduate Instrumental Analysis Program. Funding was provided by the National Science Foundation, the Army Research Office, the Center for Emergent Materials at Ohio State, and the university’s Materials Research Seed Grant Program.

Contact: Joshua Goldberger, (614) 247-7438; Goldberger@chemistry.ohio-state.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu
Images of germanium in its natural state and a germanane sheet are available from Pam Frost Gorder.

Pam Frost Gorder | Newswise
Further information:
http://www.osu.edu

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>