Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Redesigned Material Could Lead to Lighter, Faster Electronics

12.04.2013
Thin Layer of Germanium May Replace Silicon in Semiconductors

The same material that formed the first primitive transistors more than 60 years ago can be modified in a new way to advance future electronics, according to a new study.

Chemists at The Ohio State University have developed the technology for making a one-atom-thick sheet of germanium, and found that it conducts electrons more than ten times faster than silicon and five times faster than conventional germanium.

The material’s structure is closely related to that of graphene—a much-touted two-dimensional material comprised of single layers of carbon atoms. As such, graphene shows unique properties compared to its more common multilayered counterpart, graphite. Graphene has yet to be used commercially, but experts have suggested that it could one day form faster computer chips, and maybe even function as a superconductor, so many labs are working to develop it.

Joshua Goldberger, assistant professor of chemistry at Ohio State, decided to take a different direction and focus on more traditional materials.

“Most people think of graphene as the electronic material of the future,” Goldberger said. “But silicon and germanium are still the materials of the present. Sixty years’ worth of brainpower has gone into developing techniques to make chips out of them. So we’ve been searching for unique forms of silicon and germanium with advantageous properties, to get the benefits of a new material but with less cost and using existing technology.”

In a paper published online in the journal ACS Nano, he and his colleagues describe how they were able to create a stable, single layer of germanium atoms. In this form, the crystalline material is called germanane.

Researchers have tried to create germanane before. This is the first time anyone has succeeded at growing sufficient quantities of it to measure the material’s properties in detail, and demonstrate that it is stable when exposed to air and water.

In nature, germanium tends to form multilayered crystals in which each atomic layer is bonded together; the single-atom layer is normally unstable. To get around this problem, Goldberger’s team created multi-layered germanium crystals with calcium atoms wedged between the layers. Then they dissolved away the calcium with water, and plugged the empty chemical bonds that were left behind with hydrogen. The result: they were able to peel off individual layers of germanane.

Studded with hydrogen atoms, germanane is even more chemically stable than traditional silicon. It won’t oxidize in air and water, as silicon does. That makes germanane easy to work with using conventional chip manufacturing techniques.

The primary thing that makes germanane desirable for optoelectronics is that it has what scientists call a “direct band gap,” meaning that light is easily absorbed or emitted. Materials such as conventional silicon and germanium have indirect band gaps, meaning that it is much more difficult for the material to absorb or emit light.

“When you try to use a material with an indirect band gap on a solar cell, you have to make it pretty thick if you want enough energy to pass through it to be useful. A material with a direct band gap can do the same job with a piece of material 100 times thinner,” Goldberger said.

The first-ever transistors were crafted from germanium in the late 1940s, and they were about the size of a thumbnail. Though transistors have grown microscopic since then—with millions of them packed into every computer chip—germanium still holds potential to advance electronics, the study showed.

According to the researchers’ calculations, electrons can move through germanane ten times faster through silicon, and five times faster than through conventional germanium. The speed measurement is called electron mobility.

With its high mobility, germanane could thus carry the increased load in future high-powered computer chips.

“Mobility is important, because faster computer chips can only be made with faster mobility materials,” Golberger said. “When you shrink transistors down to small scales, you need to use higher mobility materials or the transistors will just not work,” Goldberger explained.

Next, the team is going to explore how to tune the properties of germanane by changing the configuration of the atoms in the single layer.

Lead author of the paper was Ohio State undergraduate chemistry student Elizabeth Bianco, who recently won the first place award for this research at the nationwide nanotechnology competition NDConnect, hosted by the University of Notre Dame. Other co-authors included Sheneve Butler and Shishi Jiang of the Department of Chemistry and Biochemistry, and Oscar Restrepo and Wolfgang Windl of the Department of Materials Science and Engineering.

The research was supported in part by an allocation of computing time from the Ohio Supercomputing Center, with instrumentation provided by the Analytical Surface Facility in the Department of Chemistry and Biochemistry and the Ohio State University Undergraduate Instrumental Analysis Program. Funding was provided by the National Science Foundation, the Army Research Office, the Center for Emergent Materials at Ohio State, and the university’s Materials Research Seed Grant Program.

Contact: Joshua Goldberger, (614) 247-7438; Goldberger@chemistry.ohio-state.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu
Images of germanium in its natural state and a germanane sheet are available from Pam Frost Gorder.

Pam Frost Gorder | Newswise
Further information:
http://www.osu.edu

More articles from Materials Sciences:

nachricht ADIR Project: Lasers Recover Valuable Materials
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht High-tech sensing illuminates concrete stress testing
20.07.2017 | University of Leeds

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>