Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Putting more science into the art of making nanocrystals

11.07.2013
Preparing semiconductor quantum dots is sometimes more of a black art than a science.

That presents an obstacle to further progress in, for example, creating better solar cells or lighting devices, where quantum dots offer unique advantages that would be particularly useful if they could be used as basic building blocks for constructing larger nanoscale architectures.

Andrew GreytakAndrew Greytak, a chemist in the College of Arts and Sciences at the University of South Carolina, is leading a research team that’s making the process of synthesizing quantum dots much more systematic. His group just published a paper in Chemistry of Materials detailing an effective new method for purifying CdSe nanocrystals with well-defined surface properties.

Their process uses gel-permeation chromatography (GPC) to separate quantum dots from small-molecule impurities, and the team went further in characterizing the nanocrystals by a variety of analytical methods. A comparison of their purified quantum dots with those purified by the traditional method of multiple solvation and precipitation cycles underscored the utility of the new method in preparing uniform semiconductor nanocrystals highly amenable to further synthetic manipulation.

Quantum dots

Quantum dots, which are nanocrystals with diameters in the range of 5-10 nanometers, have optical and other physical properties different from those of larger crystals. The reduced size allows them to absorb and emit different colors than bulk quantities of the same compound because of quantum mechanical effects; they also have very large surface-to-volume ratios and can be sensitive to surface treatments.

Greytak’s laboratory typically prepares quantum dots in hydrophobic solvents (such as 1-octadecene), so they come out “capped” with hydrophobic molecules and dissolve readily in nonpolar solvents. “The way the process works, you always have a significant amount of unreacted starting material, high-boiling solvents and extra surfactants in there that are important to the synthesis,” said Greytak. “But once the synthesis is complete, they’re impurities that need to be removed.”

The historic method of quantum dot purification is cycles of solvation, precipitation (such as with alcohol), decanting of impurities and re-solvation. Although the method has been in use for some 20 years, it has a fundamental shortcoming.

“With the precipitation and redissolution process, it’s not actually doing the separation on the basis of the size of the particle, it’s doing it on the basis of the solubility,” said Greytak. “So if you have impurities that have solubility qualities similar to those of the particle, they aren’t removed.”

Gel-permeation chromatography

Greytak groupGreytak directed his team, which included graduate students Yi Shen, Megan Gee and Rui Tan, in developing GPC as a highly effective alternative. A size-exclusion technique, GPC separates chemical species according to molecular weight and is commonly used with macromolecules.

Compared with materials prepared through the precipitation and re-solvation process, the GPC-purified quantum dots had better stability at high temperature. Moreover, a series of NMR measurements assisted by USC research associate professor Perry Pellechia indicated that the GPC method was much more effective in removing weakly adsorbed ligands from the quantum dot surface.

Carrying a synthetic process forward

The team further examined the suitability of the quantum dots for further synthetic manipulation. Again, the GPC-purified products were superior, both in CdS shell growth on CdSe quantum dots as well as ligand exchange of cysteine on CdSe/CdxZn1-xS quantum dots.

Greytak sees the method as a fundamental step forward in being able to further manipulate quantum dots, whether in constructing larger architectures or asserting control over how the nanocrystal colloids behave in solution.

“What we like to say is that we’re developing a sequential, preparative chemistry for semiconductor nanocrystals,” said Greytak. “In most synthetic chemistry, you have a starting material, you do a reaction, and you proceed through a series of intermediates with well-defined structures that can be isolated. For a nanomaterial, it’s much more difficult, because we’re not making molecules, we’re making a population of particles that has, let’s say, a radius of two nanometers. They aren’t all identical, and achieving a consistent product has been challenging, both in terms of how to isolate it and characterize it.

“So we’re really working toward being able to characterize a sample, with, say NMR and thermogravimetric analysis, and being able to really predict with confidence how it’s going to react in a subsequent step.”

Steven Powell | EurekAlert!
Further information:
http://www.sc.edu

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>