Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plasmonics: A flexible bridge between two worlds

11.04.2013
A novel material shows its credentials to facilitate the integration of photonic and electronic components in practical devices

Many devices used in everyday life — whether they be televisions, mobile phones or barcode scanners — are based on the manipulation of electric currents and light. At the micro- and nano-scales, however, it is typically challenging to integrate electronic components with photonic components.

At these small dimensions, the wavelengths of light become long relative to the size of the device. Consequently, the light waves are barely detectable by the device, just as passing waves simply roll past thin poles in a water body.

Better integration of photonic and electronic components in nanoscale devices may now become possible, thanks to work by Khuong Phuong Ong and Hong-Son Chu from the A*STAR Institute of High Performance Computing and their co-workers in Singapore and the US. From computer simulations, they have identified that the compound BiFeO3 has the potential to be used to efficiently couple light to electrical charges through light-induced electron oscillations known as plasmons. The researchers propose that this coupling could be activated, controlled and switched off, on demand, by applying an electrical field to an active plasmonic device based on this material. If such a device were realized on a very small footprint it would give scientists a versatile tool for connecting components that manipulate light or electric currents.

“The fact that, in theory, the properties of BiFeO3 [could] be [so readily controlled] by applying an electric field makes it a promising material for high-performance plasmonic devices,” explains Ong. He says that they expected such favorable properties after they had calculated the behavior of the material. But when they studied the behavior of the proposed BiFeO3-based device, they found that it could outperform devices based on BaTiO3, which is one of the best materials currently used for such applications.

Like BaTiO3, BiFeO3 can be fabricated relatively easily and cheaply. The new material is therefore a particularly promising candidate for device applications. Ong, Chu and their collaborators will now explore that potential. “We will design BiFeO3 nanostructures optimized for applications such as optical devices for data communication, sensing and solar-energy conversion,” says Ong.

According to Ong and Chu, an important step on the path to producing practical devices will be assessing the compatibility of BiFeO3-based structures with standard technologies, which typically use materials known as metal-oxide semiconductors. This future work will involve collaborations with experimental groups at the A*STAR Institute of Materials Research and Engineering and at the National University of Singapore.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing

Journal information

Chu, S. H., Singh, D. J., Wang, J., Li, E.-P. & Ong, K. P. High optical performance and practicality of active plasmonic devices based on rhombohedral BiFeO3. Laser & Photonics Reviews 6, 684–689 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6656
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Protein Structure Could Unlock New Treatments for Cystic Fibrosis

14.12.2017 | Life Sciences

Cardiolinc™: an NPO to personalize treatment for cardiovascular disease patients

14.12.2017 | Life Sciences

ASU scientists develop new, rapid pipeline for antimicrobials

14.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>