Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plasmonics: A flexible bridge between two worlds

11.04.2013
A novel material shows its credentials to facilitate the integration of photonic and electronic components in practical devices

Many devices used in everyday life — whether they be televisions, mobile phones or barcode scanners — are based on the manipulation of electric currents and light. At the micro- and nano-scales, however, it is typically challenging to integrate electronic components with photonic components.

At these small dimensions, the wavelengths of light become long relative to the size of the device. Consequently, the light waves are barely detectable by the device, just as passing waves simply roll past thin poles in a water body.

Better integration of photonic and electronic components in nanoscale devices may now become possible, thanks to work by Khuong Phuong Ong and Hong-Son Chu from the A*STAR Institute of High Performance Computing and their co-workers in Singapore and the US. From computer simulations, they have identified that the compound BiFeO3 has the potential to be used to efficiently couple light to electrical charges through light-induced electron oscillations known as plasmons. The researchers propose that this coupling could be activated, controlled and switched off, on demand, by applying an electrical field to an active plasmonic device based on this material. If such a device were realized on a very small footprint it would give scientists a versatile tool for connecting components that manipulate light or electric currents.

“The fact that, in theory, the properties of BiFeO3 [could] be [so readily controlled] by applying an electric field makes it a promising material for high-performance plasmonic devices,” explains Ong. He says that they expected such favorable properties after they had calculated the behavior of the material. But when they studied the behavior of the proposed BiFeO3-based device, they found that it could outperform devices based on BaTiO3, which is one of the best materials currently used for such applications.

Like BaTiO3, BiFeO3 can be fabricated relatively easily and cheaply. The new material is therefore a particularly promising candidate for device applications. Ong, Chu and their collaborators will now explore that potential. “We will design BiFeO3 nanostructures optimized for applications such as optical devices for data communication, sensing and solar-energy conversion,” says Ong.

According to Ong and Chu, an important step on the path to producing practical devices will be assessing the compatibility of BiFeO3-based structures with standard technologies, which typically use materials known as metal-oxide semiconductors. This future work will involve collaborations with experimental groups at the A*STAR Institute of Materials Research and Engineering and at the National University of Singapore.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing

Journal information

Chu, S. H., Singh, D. J., Wang, J., Li, E.-P. & Ong, K. P. High optical performance and practicality of active plasmonic devices based on rhombohedral BiFeO3. Laser & Photonics Reviews 6, 684–689 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6656
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

nachricht A rhodium-based catalyst for making organosilicon using less precious metal
22.06.2017 | Tokyo Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>