Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Photonics: Graphene’s flexible future

Theoretical calculations show graphene’s potential for controlling nanoscale light propagation on a chip

Semiconductors have revolutionized computing because of their efficient control over the flow of electrical currents on a single chip, which has led to devices such as the transistor.

Plots showing that surface plasmons are more confined when propagating along on a monolayer of graphene (G) than they are along a thin film of gold (Au).

Copyright : 2012 A*STAR Institute of High Performance Computing

Working towards a similar tunable functionality for light, researchers from the A*STAR Institute of High Performance Computing (IHPC), Singapore, have shown how graphene could be used to control light at the nanometer scale, advancing the concept of photonic circuits on chips1.

Graphene, which is made from a single layer of carbon atoms, has excellent electronic properties; some of these are also useful in photonic applications. Usually, only metals are able to confine light to the order of a few nanometers, which is much smaller than the wavelength of the light.
At the surface of metals, collective oscillations of electrons, so-called ‘surface plasmons’, act as powerful antennae that confine light to very small spaces. Graphene, with its high electrical conductivity, shows similar behavior to metals so can also be used for plasmon-based applications, explains Choon How Gan of IHPC, who led the research.

Gan and co-workers studied theoretically and computationally how surface plasmons travel along sheets of graphene. Even though graphene is a poorer conductor than a metal, so plasmon propagation losses are higher, it has several key advantages, says team member Hong Son Chu. “The key advantage that makes graphene an excellent platform for plasmonic devices is its large tunability that cannot be seen in the usual noble metals,” he explains. “This tunability can be achieved in different ways, using electric or magnetic fields, optical triggers and temperature.”

The team’s calculations indicated that surface plasmons propagating along a sheet of graphene would be much more confined to a small space than they would traveling along a gold surface (see image). However, the team also showed that surface plasmons would travel far better between two sheets of graphene brought into close contact. Furthermore, by adjusting design parameters such as the separation between the sheets, as well as their electrical conductivity, much better control over surface plasmon properties is possible.

In the future, Gan and his co-workers plan to investigate these properties for applications. “We will explore the potential of graphene plasmonic devices also for the terahertz and mid-infrared regime,” he explains. “In this spectral range, graphene plasmonic structures could be promising for applications such as molecular sensing, as photodetectors, or for optical devices that can switch and modulate light.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing

Journal information

Gan, C. H., Chu, H. S. & Li, E. P. Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies. Physical Review B 85, 125431 (2012)

A*STAR Research | Research asia research news
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>