Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level

22.07.2014

Graphene, a material that consists of a lattice of carbon atoms, one atom thick, is widely touted as being the most electrically conductive material ever studied. However, not all graphene is the same. With so few atoms comprising the entirety of the material, the arrangement of each one has an impact on its overall function.

Now, for the first time, researchers from the University of Pennsylvania have used a cutting-edge microscope to study the relationship between the atomic geometry of a ribbon of graphene and its electrical properties.


An illustration of a graphene nanoribbon shaped by the beam of a transmission electron microscope. (Credit: Robert Johnson)

A deeper understanding of this relationship will be necessary for the design of graphene-based integrated circuits, computer chips and other electronic devices.

The study was led by professors A.T. Charlie Johnson and Marija Drndić, both of the Department of Physics and Astronomy in Penn’s School of Arts & Sciences, along with Zhengqing John Qi, a member of Johnson’s lab, and Julio Rodríguez-Manzo from Drndic’s lab. Sung Ju Hong, then a member of Johnson’s lab, also contributed to the study.

The Penn team collaborated with researchers at Brookhaven National Laboratory, the Université Catholique de Louvain in Belgium and Seoul National University in South Korea.

Their study was published in the journal Nano Letters.

The team’s experiments were enabled by Brookhaven’s aberration-corrected transmission electron microscope, or AC-TEM. By focusing the microscope’s electron beam, the researchers were able to controllably cut sheets of graphene into ribbons with widths as small as 10 nanometers, while keeping them connected to an electricity source outside the microscope. They then could use the AC-TEM’s nanoscopic resolution to distinguish between individual carbon atoms within those ribbons. This level of precision was necessary to determine how the carbon atoms on the edges of the nanoribbons were oriented.

“We’re relating the structure of the graphene — its atomic arrangement — to its electrical transport properties,” said Drndić. “In particular, we were looking at the edges, which we were able to identify the geometry of.”

“Graphene looks like chicken wire, and you can cut up this hexagonal lattice of carbon atoms in different ways, producing different shapes on the edge,” she said. “But if you cut it one way, it might behave more like a metal, and, if you cut it another way, it could be more like a semiconductor.”  

For any piece of graphene, either the pointy or flat sides of its carbon hexagons might be at the piece’s edge. Where the pointy sides face outward, the edge has a “zig-zag” pattern. Flat sides produce “armchair” pattern when they are on an edge. Any given edge might also display a mix of the two, depending on how the piece of graphene was initially cut and how that edge degrades under stress.   

Because the graphene nanoribbons were connected to an electricity source while they were inside the AC-TEM, the researchers were able to simultaneously trace the outline of the ribbons and measure their conductivity. This allowed the two figures to be correlated.

“If you want to use graphene nanoribbons in computer chips, for example, you absolutely need to have this information,” Johnson said. “People have looked at these ribbons under the microscope, and people have measured their electrical properties without looking at them but never both at the same time.”

After studying the nanoribbons with relatively low levels of electron flow, the researchers turned up the intensity, much like turning up a light bulb using a dimmer switch The combination of the electron bombardment from the microscope and the large amount of electrons flowing through the nanoribbons caused their structures to gradually degrade. As carbon bonds within the nanoribbons broke, they became thinner and the shape of their edges changed, providing additional data points.

“By doing everything within the microscope,” Rodríguez-Manzo said, “we can just follow this transformation to the end, measuring currents for the nanoribbons even when the get smaller than 1 nanometer across. That’s five atoms wide.”

This kind of stress testing is critical to the future design of graphene electronics.

“We have to see how much current we can transport before these nanoribbons fall apart. Our data shows that this figure is high compared to copper,” Rodríguez-Manzo said. 

The harsh conditions also caused some of the ribbons to fold up on themselves, producing nanoscopic graphene loops. Serendipitously, the team found that these loops had desirable properties.  

“When the edges wrap around and form the loops we see,” Johnson said, “it helps hold the structure together, and it makes the current density a thousand higher than what is currently state of the art. That structure would be useful in making interconnects [which are the conducting paths that connect transistors together in integrated circuits].”  

Future research in this field will involve directly comparing the electrical properties of graphene nanoribbons with different widths and edge shapes.

“Once we can cut these nanoribbons atom by atom,” Drndić said, “there will be a lot more we can achieve.”

The research was supported by the National Science Foundation, the National Institutes of Health, the U.S. Department of Energy, Belgium’s Fonds de la Recherche Scientifique, South Korea’s Ministry of Education, Science and Technology and National Research Foundation and the European Union’s Graphene Flagship Consortium.  

Andrés R. Botello-Méndez and Jean-Christophe Charlierof the Université Catholique de Louvain in Belgium, Eric Stach of Brookhaven National Laboratory and Yung Woo Park of Seoul National University also contributed to the study.

Evan Lerner | Eurek Alert!
Further information:
http://www.upenn.edu/pennnews/news/penn-study-understanding-graphene-s-electrical-properties-atomic-level

Further reports about: Atomic Electrical Laboratory electricity geometry graphene nanoribbons properties structure

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>