Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn Researchers Find New Way to Prevent Cracking in Nanoparticle Films

16.10.2012
Making uniform coatings is a common engineering challenge, and, when working at the nanoscale, even the tiniest cracks or defects can be a big problem. New research from University of Pennsylvania engineers has shown a new way of avoiding such cracks when depositing thin films of nanoparticles.

The research was led by graduate student Jacob Prosser and assistant professor Daeyeon Lee, both of the Department of Chemical and Biomolecular Engineering in Penn’s School of Engineering and Applied Science.

Graduate student Teresa Brugarolas and undergraduate student Steven Lee, also of Chemical and Biomolecular Engineering, and professor Adam Nolte of the Rose-Hulman Institute of Technology participated in the research.

Their work was published in the journal Nano Letters.

To generate a nanoparticle film, the desired particles are suspended in a suitable liquid, which is then thinly and evenly spread over the surface through a variety of physical methods. The liquid is then allowed to evaporate, but, as it dries, the film can crack like mud in the sun.

“One method for preventing cracking is modifying the suspension’s chemistry by putting binding additives in there,“ Prosser said. “But that is essentially adding a new material to the film, which may ruin its properties.”

This dilemma is highlighted in the case of electrodes, the contact points in many electrical devices that transfer electricity. High-end devices, like certain types of solar cells, have electrodes composed of nanoparticle films that conduct electrons, but cracks in the films act as insulators. Adding a binder to the films would only compound the problem.

“These binders are usually polymers, which are insulators themselves,” Lee said. “If you use them, you’re not going to get the targeted property, the conductivity, that you want.”

Engineers can prevent cracks with alternative drying methods, but these involve ultra-high temperatures or pressures and thus expensive and complicated equipment. A cheap and efficient method for preventing cracks would be a boon for any number of industrial processes.

The ubiquity of cracking in this context, however, means that researchers know the “critical cracking thickness” for many materials. The breakthrough came when Prosser tried making a film thinner than this threshold, then stacking them together to make a composite of the desired thickness.

“I was thinking about how, in the painting of buildings and homes, multiple coats are used,” Prosser said. “One reason for that is to avoid cracking and peeling. I thought it could work for these films as well, so I gave it a try.”

“This is one of those things where, once you figure it out,” Lee said, “it’s so obvious, but somehow this method has evaded everyone all these years.”

One reason this approach may have remained untried is that it is counterintuitive that it should work at all.

The method the researchers used to make the films is known as “spin-coating.” A precise amount of the nanoparticle suspension — in this case, silica spheres in water — is spread over the target surface. The surface is then rapidly spun, causing centrifugal acceleration to thin the suspension over the surface in a uniform layer. The suspension then dries with continued rotation, causing the water to evaporate and leaving the silica spheres behind in a compacted arrangement.

But to make a second layer over this first, another drop of liquid suspension would need to be placed on the dried nanoparticles, something that would normally wash them away. However, the researchers were surprised when the dried layers remained intact after the process was repeated 13 times; the exact mechanism by which they remained stable is something of a mystery.

“We believe that the nanoparticles are staying on the surface,” Lee said, “because covalent bonds are being formed between them even though we’re not exposing them to high temperatures. The inspiration for that hypothesis came from our colleague Rob Carpick. His recent Nature paper was all about how silica-silica surfaces form bonds at room temperature; we think this will work with other kinds of metal oxides.”

Future research will be necessary to pin down this mechanism and apply it to new types of nanoparticles.

The research was supported by the National Science Foundation and the Penn Materials Research Science and Engineering Center.

Evan Lerner | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Materials Sciences:

nachricht New value added to the ICSD (Inorganic Crystal Structure Database)
27.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>