Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn Researchers Find New Way to Prevent Cracking in Nanoparticle Films

16.10.2012
Making uniform coatings is a common engineering challenge, and, when working at the nanoscale, even the tiniest cracks or defects can be a big problem. New research from University of Pennsylvania engineers has shown a new way of avoiding such cracks when depositing thin films of nanoparticles.

The research was led by graduate student Jacob Prosser and assistant professor Daeyeon Lee, both of the Department of Chemical and Biomolecular Engineering in Penn’s School of Engineering and Applied Science.

Graduate student Teresa Brugarolas and undergraduate student Steven Lee, also of Chemical and Biomolecular Engineering, and professor Adam Nolte of the Rose-Hulman Institute of Technology participated in the research.

Their work was published in the journal Nano Letters.

To generate a nanoparticle film, the desired particles are suspended in a suitable liquid, which is then thinly and evenly spread over the surface through a variety of physical methods. The liquid is then allowed to evaporate, but, as it dries, the film can crack like mud in the sun.

“One method for preventing cracking is modifying the suspension’s chemistry by putting binding additives in there,“ Prosser said. “But that is essentially adding a new material to the film, which may ruin its properties.”

This dilemma is highlighted in the case of electrodes, the contact points in many electrical devices that transfer electricity. High-end devices, like certain types of solar cells, have electrodes composed of nanoparticle films that conduct electrons, but cracks in the films act as insulators. Adding a binder to the films would only compound the problem.

“These binders are usually polymers, which are insulators themselves,” Lee said. “If you use them, you’re not going to get the targeted property, the conductivity, that you want.”

Engineers can prevent cracks with alternative drying methods, but these involve ultra-high temperatures or pressures and thus expensive and complicated equipment. A cheap and efficient method for preventing cracks would be a boon for any number of industrial processes.

The ubiquity of cracking in this context, however, means that researchers know the “critical cracking thickness” for many materials. The breakthrough came when Prosser tried making a film thinner than this threshold, then stacking them together to make a composite of the desired thickness.

“I was thinking about how, in the painting of buildings and homes, multiple coats are used,” Prosser said. “One reason for that is to avoid cracking and peeling. I thought it could work for these films as well, so I gave it a try.”

“This is one of those things where, once you figure it out,” Lee said, “it’s so obvious, but somehow this method has evaded everyone all these years.”

One reason this approach may have remained untried is that it is counterintuitive that it should work at all.

The method the researchers used to make the films is known as “spin-coating.” A precise amount of the nanoparticle suspension — in this case, silica spheres in water — is spread over the target surface. The surface is then rapidly spun, causing centrifugal acceleration to thin the suspension over the surface in a uniform layer. The suspension then dries with continued rotation, causing the water to evaporate and leaving the silica spheres behind in a compacted arrangement.

But to make a second layer over this first, another drop of liquid suspension would need to be placed on the dried nanoparticles, something that would normally wash them away. However, the researchers were surprised when the dried layers remained intact after the process was repeated 13 times; the exact mechanism by which they remained stable is something of a mystery.

“We believe that the nanoparticles are staying on the surface,” Lee said, “because covalent bonds are being formed between them even though we’re not exposing them to high temperatures. The inspiration for that hypothesis came from our colleague Rob Carpick. His recent Nature paper was all about how silica-silica surfaces form bonds at room temperature; we think this will work with other kinds of metal oxides.”

Future research will be necessary to pin down this mechanism and apply it to new types of nanoparticles.

The research was supported by the National Science Foundation and the Penn Materials Research Science and Engineering Center.

Evan Lerner | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Materials Sciences:

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>