Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn Researchers Find New Way to Prevent Cracking in Nanoparticle Films

16.10.2012
Making uniform coatings is a common engineering challenge, and, when working at the nanoscale, even the tiniest cracks or defects can be a big problem. New research from University of Pennsylvania engineers has shown a new way of avoiding such cracks when depositing thin films of nanoparticles.

The research was led by graduate student Jacob Prosser and assistant professor Daeyeon Lee, both of the Department of Chemical and Biomolecular Engineering in Penn’s School of Engineering and Applied Science.

Graduate student Teresa Brugarolas and undergraduate student Steven Lee, also of Chemical and Biomolecular Engineering, and professor Adam Nolte of the Rose-Hulman Institute of Technology participated in the research.

Their work was published in the journal Nano Letters.

To generate a nanoparticle film, the desired particles are suspended in a suitable liquid, which is then thinly and evenly spread over the surface through a variety of physical methods. The liquid is then allowed to evaporate, but, as it dries, the film can crack like mud in the sun.

“One method for preventing cracking is modifying the suspension’s chemistry by putting binding additives in there,“ Prosser said. “But that is essentially adding a new material to the film, which may ruin its properties.”

This dilemma is highlighted in the case of electrodes, the contact points in many electrical devices that transfer electricity. High-end devices, like certain types of solar cells, have electrodes composed of nanoparticle films that conduct electrons, but cracks in the films act as insulators. Adding a binder to the films would only compound the problem.

“These binders are usually polymers, which are insulators themselves,” Lee said. “If you use them, you’re not going to get the targeted property, the conductivity, that you want.”

Engineers can prevent cracks with alternative drying methods, but these involve ultra-high temperatures or pressures and thus expensive and complicated equipment. A cheap and efficient method for preventing cracks would be a boon for any number of industrial processes.

The ubiquity of cracking in this context, however, means that researchers know the “critical cracking thickness” for many materials. The breakthrough came when Prosser tried making a film thinner than this threshold, then stacking them together to make a composite of the desired thickness.

“I was thinking about how, in the painting of buildings and homes, multiple coats are used,” Prosser said. “One reason for that is to avoid cracking and peeling. I thought it could work for these films as well, so I gave it a try.”

“This is one of those things where, once you figure it out,” Lee said, “it’s so obvious, but somehow this method has evaded everyone all these years.”

One reason this approach may have remained untried is that it is counterintuitive that it should work at all.

The method the researchers used to make the films is known as “spin-coating.” A precise amount of the nanoparticle suspension — in this case, silica spheres in water — is spread over the target surface. The surface is then rapidly spun, causing centrifugal acceleration to thin the suspension over the surface in a uniform layer. The suspension then dries with continued rotation, causing the water to evaporate and leaving the silica spheres behind in a compacted arrangement.

But to make a second layer over this first, another drop of liquid suspension would need to be placed on the dried nanoparticles, something that would normally wash them away. However, the researchers were surprised when the dried layers remained intact after the process was repeated 13 times; the exact mechanism by which they remained stable is something of a mystery.

“We believe that the nanoparticles are staying on the surface,” Lee said, “because covalent bonds are being formed between them even though we’re not exposing them to high temperatures. The inspiration for that hypothesis came from our colleague Rob Carpick. His recent Nature paper was all about how silica-silica surfaces form bonds at room temperature; we think this will work with other kinds of metal oxides.”

Future research will be necessary to pin down this mechanism and apply it to new types of nanoparticles.

The research was supported by the National Science Foundation and the Penn Materials Research Science and Engineering Center.

Evan Lerner | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Materials Sciences:

nachricht Game-changing finding pushes 3D-printing to the molecular limit
20.06.2018 | University of Nottingham

nachricht Creating a new composite fuel for new-generation fast reactors
20.06.2018 | Lobachevsky University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>