Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn Physicists Develop Scalable Method for Making Graphene

03.03.2011
New research from the University of Pennsylvania demonstrates a more consistent and cost-effective method for making graphene, the atomic-scale material that has promising applications in a variety of fields, and was the subject of the 2010 Nobel Prize in Physics.

As explained in a recently published study, a Penn research team was able to create high-quality graphene that is just a single atom thick over 95% of its area, using readily available materials and manufacturing processes that can be scaled up to industrial levels.

“I’m aware of reports of about 90%, so this research is pushing it closer to the ultimate goal, which is 100%,” said the study’s principal investigator, A.T. Charlie Johnson, professor of physics. “We have a vision of a fully industrial process.”

Other team members on the project included postdoctoral fellows Zhengtang Luo and Brett Goldsmith, graduate students Ye Lu and Luke Somers and undergraduate students Daniel Singer and Matthew Berck, all of Penn’s Department of Physics and Astronomy in the School of Arts and Sciences.

The group’s findings were published on Feb. 10 in the journal Chemistry of Materials.

Graphene is a chicken-wire-like lattice of carbon atoms arranged in thin sheets a single atomic layer thick. Its unique physical properties, including unbeatable electrical conductivity, could lead to major advances in solar power, energy storage, computer memory and a host of other technologies. But complicated manufacturing processes and often-unpredictable results currently hamper graphene’s widespread adoption.

Producing graphene at industrial scales isn’t inhibited by the high cost or rarity of natural resources – a small amount of graphene is likely made every time a pencil is used – but rather the ability to make meaningful quantities with consistent thinness.

One of the more promising manufacturing techniques is CVD, or chemical vapor deposition, which involves blowing methane over thin sheets of metal. The carbon atoms in methane form a thin film of graphene on the metal sheets, but the process must be done in a near vacuum to prevent multiple layers of carbon from accumulating into unusable clumps.

The Penn team’s research shows that single-layer-thick graphene can be reliably produced at normal pressures if the metal sheets are smooth enough.

“The fact that this is done at atmospheric pressure makes it possible to produce graphene at a lower cost and in a more flexible way,” Luo, the study’s lead author, said.

Whereas other methods involved meticulously preparing custom copper sheets in a costly process, Johnson’s group used commercially available copper foil in their experiment.

“You could practically buy it at the hardware store,” Johnson said.

Other methods make expensive custom copper sheets in an effort to get them as smooth as possible; defects in the surface cause the graphene to accumulate in unpredictable ways. Instead, Johnson’s group “electropolished” their copper foil, a common industrial technique used in finishing silverware and surgical tools. The polished foil was smooth enough to produce single-layer graphene over 95% of its surface area.

Working with commercially available materials and chemical processes that are already widely used in manufacturing could lower the bar for commercial applications.

“The overall production system is simpler, less expensive, and more flexible” Luo said.

The most important simplification may be the ability to create graphene at ambient pressures, as it would take some potentially costly steps out of future graphene assembly lines.

“If you need to work in high vacuum, you need to worry about getting it into and out of a vacuum chamber without having a leak,” Johnson said. “If you’re working at atmospheric pressure, you can imagine electropolishing the copper, depositing the graphene onto it and then moving it along a conveyor belt to another process in the factory.”

This research was supported by Penn’s Nano/Bio Interface Center through the National Science Foundation.

Evan Lerner | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Materials Sciences:

nachricht Researchers shoot for success with simulations of laser pulse-material interactions
29.03.2017 | DOE/Oak Ridge National Laboratory

nachricht Nanomaterial makes laser light more applicable
28.03.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>