Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoparticles: Polymer knots with silicon hearts

30.08.2013
Biocompatible complexes for drug delivery applications get a structural boost from nanoscale silicon cages

Protein-based drugs show promising activity against many hard-to-treat targets. Getting these biomolecules past the body’s numerous defenses, however, requires innovative technology such as drug-delivering nanoparticles. Polylactic acid (PLA) is a potential candidate because it is non-toxic, biodegradable, and spontaneously assembles into tiny structures under the right conditions.


Polylactic acid (PLA)-based organic–inorganic polymers (above) self-assemble into nanoparticle spheres with the potential for drug delivery. During polymerization, PLA (magenta) forms one of two mirror-image structures.

Reproduced, with permission, from Ref. 1 © 2012 Royal Society of Chemistry

Chaobin He from the A*STAR Institute of Materials Research and Engineering in Singapore and co-workers have developed a robust method to synthesize PLA nanoparticles using copolymer technology and a rigid ‘nanocage’ made from silicon.

During polymerization, PLA forms into one of two mirror-image compounds, known as L-type or D-type (see image). When chemists mix L- and D-type PLA chains together, their complementary shapes interlock through a process known as stereocomplexation. Recently, chemists have found that constructing PLA chains containing discrete ‘blocks’ of L- and D-compounds brings unprecedented control over nanoparticle formation — allowing them to produce distinct shapes.

Although stereocomplexation improves the mechanical attributes of PLA nanoparticles, many of these compounds aggregate undesirably after a few days in water. He and his team investigated whether they could retain the nanoparticles’ shape using silsequioxane, a stiff and small framework of silicon–oxygen atoms that has a strong record of boosting polymer strength at the molecular level.

After connecting silsequioxane to individual L- and D-type PLA chains, the researchers used a process called atom transfer radical polymerization to generate organic–inorganic hybrid co-polymers with well-defined PLA and silsequioxane segments. When they mixed two block co-polymers with complementary L- and D- PLA segments into polar organic solvents that hold slight electrical charges, the chains self-assembled into nanoscale spheres. Because co-polymers without matching L- and D-segments remained in solution under the same conditions, the team deduced that stereocomplexation is the primary force driving nanoparticle formation.

Experiments revealed that the silicon nanocages significantly improved PLA nanoparticle stability: even after a month in diluted aqueous solution, these hybrid compounds retained their unique shapes. Furthermore, the team found that incorporating longer silsequioxane units into the PLA chains caused the nanoparticles to assemble into smaller spheres. According to He, this suggests that the inorganic constituent can influence the probability of stereocomplexation — findings that open opportunities to precisely tune nanoparticle size and shape.

He and co-workers anticipate that their nanoparticles might enhance the properties of PLA plastics used for medical implants by acting as novel ‘filler’ substances. He explains that the tiny compounds should enhance interfacial adhesion inside large sheets of PLA, thereby augmenting its ductility and toughness.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

Journal information

Tan, B. H., Hussain, H., Leong, Y. W., Lin, T. T., Tjiu, W. W. & He, C. Tuning self-assembly of hybrid PLA-P(MA-POSS) block copolymers in solution via stereocomplexation. Polymer Chemistry 4, 1250–1259 (2013).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6723
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Atomic structure of ultrasound material not what anyone expected
21.02.2018 | North Carolina State University

nachricht Hidden talents: Converting heat into electricity with pencil and paper
20.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>