Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanocups brim with potential

17.03.2009
Light-bending metamaterial could lead to superlenses, invisibility cloaks

Researchers at Rice University have created a metamaterial that could light the way toward high-powered optics, ultra-efficient solar cells and even cloaking devices.

Naomi Halas, an award-winning pioneer in nanophotonics, and graduate student Nikolay Mirin created a material that collects light from any direction and emits it in a single direction. The material uses very tiny, cup-shaped particles called nanocups.

In a paper in the February issue of the journal Nano Letters, co-authors Halas and Mirin explain how they isolated nanocups to create light-bending nanoparticles.

In earlier research, Mirin had been trying to make a thin gold film with nano-sized holes when it occurred to him the knocked-out bits were worth investigating. Previous work on gold nanocups gave researchers a sense of their properties, but until Mirin's revelation, nobody had found a way to lock ensembles of isolated nanocups to preserve their matching orientation.

"The truth is a lot of exciting science actually does fall in your lap by accident," said Halas, Rice's Stanley C. Moore Professor in Electrical and Computer Engineering and professor of chemistry and biomedical engineering. "The big breakthrough here was being able to lift the nanocups off of a structure and preserve their orientation. Then we could look specifically at the properties of these oriented nanostructures."

Mirin's solution involved thin layers of gold deposited from various angles onto polystyrene or latex nanoparticles that had been distributed randomly on a glass substrate. The cups that formed around the particles – and the dielectric particles themselves – were locked into an elastomer and lifted off of the substrate. "You end up with this transparent thing with structures all oriented the same way," he said.

In other words, he had a metamaterial, a substance that gets its properties from its structure and not its composition. Halas and Mirin found their new material particularly adept at capturing light from any direction and focusing it in a single direction.

Redirecting scattered light means none of it bounces off the metamaterial back into the eye of an observer. That essentially makes the material invisible. "Ideally, one should see exactly what is behind an object," said Mirin.

"The material should not only retransmit the color and brightness of what is behind, like squid or chameleons do, but also bend the light around, preserving the original phase information of the signal."

Halas said the embedded nanocups are the first true three-dimensional nanoantennas, and their light-bending properties are made possible by plasmons. Electrons inside plasmonic nanoparticles resonate with input from an outside electromagnetic source in the same way a drop of water will make ripples in a pool. The particles act the same way radio antennas do, with the ability to absorb and emit electromagnetic waves that, in this case, includes visible wavelengths.

Because nanocup ensembles can focus light in a specific direction no matter where the incident light is coming, they make pretty good candidates for, say, thermal solar power. A solar panel that doesn't have to track the sun yet focuses light into a beam that's always on target would save a lot of money on machinery.

Solar-generated power of all kinds would benefit, said Halas. "In solar cells, about 80 percent of the light passes right through the device. And there's a huge amount of interest in making cells as thin as possible for many reasons."

Halas said the thinner a cell gets, the more transparent it becomes. "So ways in which you can divert light into the active region of the device can be very useful. That's a direction that needs to be pursued," she said.

Using nanocup metamaterial to transmit optical signals between computer chips has potential, she said, and enhanced spectroscopy and superlenses are also viable possibilities.

"We'd like to implement these into some sort of useful device," said Halas of her team's next steps. "We would also like to make several variations. We're looking at the fundamental aspects of the geometry, how we can manipulate it, and how we can control it better.

"Probably the most interesting application is something we not only haven't thought of yet, but might not be able to conceive for quite some time."

The paper can be found at http://pubs.acs.org/doi/abs/10.1021/nl900208z?prevSearch=mirin&searchHistoryKey.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Materials Sciences:

nachricht Strange but true: Turning a material upside down can sometimes make it softer
20.10.2017 | Universitat Autonoma de Barcelona

nachricht Metallic nanoparticles will help to determine the percentage of volatile compounds
20.10.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>