Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Nano Techniques Integrate Electron Gas-Producing Oxides with Silicon

20.10.2010
In cold weather, many children can’t resist breathing onto a window and writing in the condensation. Now imagine the window as an electronic device platform, the condensation as a special conductive gas, and the letters as lines of nanowires.

A team led by University of Wisconsin-Madison Materials Science and Engineering Professor Chang-Beom Eom has demonstrated methods to harness essentially this concept for broad applications in nanoelectronic devices, such as next-generation memory or tiny transistors. The discoveries were published Oct. 19 by the journal Nature Communications.

Eom’s team has developed techniques to produce structures based on electronic oxides that can be integrated on a silicon substrate—the most common electronic device platform.

“The structures we have developed, as well as other oxide-based electronic devices, are likely to be very important in nanoelectronic applications, when integrated with silicon,” Eom says.

The term “oxide” refers to a compound with oxygen as a fundamental element. Oxides include millions of compounds, each with unique properties that could be valuable in electronics and nanoelectronics.

Usually, oxide materials cannot be grown on silicon because oxides and silicon have different, incompatible crystal structures. Eom’s technique combines single-crystal expitaxy, postannealing and etching to create a process that permits the oxide structure to reside on silicon—a significant accomplishment that solves a very complex challenge.

The new process allows the team to form a structure that puts three-atom-thick layers of lanthanum-aluminum-oxide in contact with strontium-titanium-oxide and then put the entire structure on top of a silicon substrate.

These two oxides are important because an “electron gas” forms at the interface of their layers, and a scanning probe microscope can make this gas layer conductive. The tip of the microscope is dragged along the surface with nanometer-scale accuracy, leaving behind a pattern of electrons that make the one-nanometer-thick gas layer. Using the tip, Eom’s team can “draw” lines of these electrons and form conducting nanowires. The researchers also can “erase” those lines to take away conductivity in a region of the gas.

In order to integrate the oxides on silicon, the crystals must have a low level of defects, and researchers must have atomic control of the interface. More specifically, the top layer of strontium-titanium-oxide has to be totally pure and match up with a totally pure layer of lanthanum-oxide at the bottom of the lanthanum-aluminum-oxide; otherwise, the gas layer won’t form between the oxide layers. Finally, the entire structure has been tuned to be compatible with the underlying silicon.

Eom’s team includes UW-Madison Physics Professor Mark Rzchowski, postdocs and graduate students in materials science and engineering and physics, as well as collaborators from the University of Michigan, Ann Arbor, and the University of Pittsburgh, Pennsylvania. The National Science Foundation supports the research.

Sandra Knisely | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Materials Sciences:

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

nachricht Spray-on electric rainbows: Making safer electrochromic inks
17.08.2017 | Georgia Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>