Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano-sized silicon oxide electrode for the next generation lithium ion batteries

15.07.2014

This article published in the Science and Technology of Advanced Materials reports an approach with industrial potential to produce nano-sized composite silicon-based powders as negative electrodes for the next generation lithium ion batteries.

The lithium ion battery market has been growing steadily and has been seeking an approach to increase battery capacity while retaining its capacity for long recharging process.


Lithium-ion battery testing

Copyright : Argonne National Laboratory / Flickr

Structuring materials for electrode at the nanometre-length scale has been known to be an effective way to meet this demand; however, such nanomaterials would essentially need to be produced by high throughput processing in order to transfer these technologies to industry.

This article published in the Science and Technology of Advanced Materials reports an approach which potentially has an industrially compatible high throughputs to produce nano-sized composite silicon-based powders as a strong candidate for the negative electrode of the next generation high density lithium ion batteries.

The authors have successfully produced nanocomposite SiO powders by plasma spray physical vapor deposition [1] using low cost metallurgical grade powders at high throughputs. Using this method, they demonstrated an explicit improvement in the battery capacity cycle performance with these powders as electrode.

The uniqueness of this processing method is that nanosized SiO composites are produced instantaneously through the evaporation and subsequent co-condensation of the powder feedstock. The approach is called plasma spray physical vapor deposition (PS-PVD). 

The composites are 20 nm particles, which are composed of a crystalline Si core and SiOx shell. Furthermore, the addition of methane (CH4) promotes the reduction of SiO and results in the decreased SiO-shell thickness.  The core-shell structure is formed in a single-step continuous processing.

As a result, the irreversible capacity was effectively decreased, and half-cell batteries made of PS-PVD powders have exhibited improved initial efficiency and maintenance of capacity as high as 1000 mAhg−1 after 100 cycles at the same time.


Reference:
Keiichiro Homma, Makoto Kambara, Toyonobu Yoshida: Sci. Technol. Adv. Mater. 15 (2014) 025006. http://dx.doi.org/10.1088/1468-6996/15/2/025006

[1] See, for instance, figures 1 and 3., J. Appl. Phys. 115, 143302 (2014); doi: 10.1063/1.4870600


For more information, contact
Dr. Makoto Kambara
Dept. Materials Engineering
The University of Tokyo
Email: mkambara@plasma.t.u-tokyo.ac.jp

Associated links

Mikiko Tanifuji | Research SEA News
Further information:
http://www.nims.go.jp/eng/
http://www.researchsea.com

Further reports about: Nano-sized Science Technology batteries battery capacity continuous electrode evaporation materials method powders processing

More articles from Materials Sciences:

nachricht New material could advance superconductivity
28.07.2016 | Carnegie Institution for Science

nachricht Dirty to drinkable
27.07.2016 | Washington University in St. Louis

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

 
Latest News

Vortex laser offers hope for Moore's Law

29.07.2016 | Power and Electrical Engineering

Novel 'repair system' discovered in algae may yield new tools for biotechnology

29.07.2016 | Life Sciences

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>