Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano-sized silicon oxide electrode for the next generation lithium ion batteries

15.07.2014

This article published in the Science and Technology of Advanced Materials reports an approach with industrial potential to produce nano-sized composite silicon-based powders as negative electrodes for the next generation lithium ion batteries.

The lithium ion battery market has been growing steadily and has been seeking an approach to increase battery capacity while retaining its capacity for long recharging process.


Lithium-ion battery testing

Copyright : Argonne National Laboratory / Flickr

Structuring materials for electrode at the nanometre-length scale has been known to be an effective way to meet this demand; however, such nanomaterials would essentially need to be produced by high throughput processing in order to transfer these technologies to industry.

This article published in the Science and Technology of Advanced Materials reports an approach which potentially has an industrially compatible high throughputs to produce nano-sized composite silicon-based powders as a strong candidate for the negative electrode of the next generation high density lithium ion batteries.

The authors have successfully produced nanocomposite SiO powders by plasma spray physical vapor deposition [1] using low cost metallurgical grade powders at high throughputs. Using this method, they demonstrated an explicit improvement in the battery capacity cycle performance with these powders as electrode.

The uniqueness of this processing method is that nanosized SiO composites are produced instantaneously through the evaporation and subsequent co-condensation of the powder feedstock. The approach is called plasma spray physical vapor deposition (PS-PVD). 

The composites are 20 nm particles, which are composed of a crystalline Si core and SiOx shell. Furthermore, the addition of methane (CH4) promotes the reduction of SiO and results in the decreased SiO-shell thickness.  The core-shell structure is formed in a single-step continuous processing.

As a result, the irreversible capacity was effectively decreased, and half-cell batteries made of PS-PVD powders have exhibited improved initial efficiency and maintenance of capacity as high as 1000 mAhg−1 after 100 cycles at the same time.


Reference:
Keiichiro Homma, Makoto Kambara, Toyonobu Yoshida: Sci. Technol. Adv. Mater. 15 (2014) 025006. http://dx.doi.org/10.1088/1468-6996/15/2/025006

[1] See, for instance, figures 1 and 3., J. Appl. Phys. 115, 143302 (2014); doi: 10.1063/1.4870600


For more information, contact
Dr. Makoto Kambara
Dept. Materials Engineering
The University of Tokyo
Email: mkambara@plasma.t.u-tokyo.ac.jp

Associated links

Mikiko Tanifuji | Research SEA News
Further information:
http://www.nims.go.jp/eng/
http://www.researchsea.com

Further reports about: Nano-sized Science Technology batteries battery capacity continuous electrode evaporation materials method powders processing

More articles from Materials Sciences:

nachricht Nanomaterial makes laser light more applicable
28.03.2017 | Christian-Albrechts-Universität zu Kiel

nachricht New value added to the ICSD (Inorganic Crystal Structure Database)
27.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>