Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular sorting for resource efficiency: new separation and recycling processes

08.08.2011
Decreasing supplies of raw materials, rapidly increasing demand in newly industrializing countries and increasingly tough environmental regulations – all these factors have contributed to the soaring price of raw materials. The only way to resolve this situation is through more efficient recycling management and improved separation and sorting technologies.

Researchers from the Fraunhofer-Gesellschaft in Germany will take on this challenge in a pioneering new project, funded as part of the Fraunhofer-Gesellschaft’s “Markets Beyond Tomorrow” research programme.

On 20th July 2011 the project “Molecular Sorting for Resource Efficiency”, coordinated by the Fraunhofer Institute for Chemical Technology ICT in Pfinztal, Germany, was officially started. The opening reception was attended by over twenty Fraunhofer researchers, representatives of the VDMA and of the president of the Fraunhofer-Gesellschaft.

The aim of the project is to close the gaps in material cycles with innovative recycling processes, which will enable resources already present in Germany to be recovered and reused in high-value applications. Starting with low concentrations of finely dispersed materials, or contaminated material flows, the developed processes will recover high-quality materials (of equal value to primary materials) on an industrial level. Examples include highly-transparent glasses, rare metals from slags and gases, and high-quality wood materials from wood scrap. The project will develop techniques for waste streams of glass, wood, composite materials, slags and hot gasses, and by the end of the project the developed processes should also be applicable to other material flows.

“These technologies have a huge application potential”, explains project leader Dr. Jörg Woidasky. “We estimate a market of 2 billion € for these technologies by 2020. Germany has taken on a leading position in this field, and in the commercialization of its developments on both a national and international level.”

The project will run for 3 years, and has received 4.5 million € funding from the Fraunhofer-Gesellschaft. Beside the Fraunhofer Institute for Chemical Technology ICT in Pfinztal, the other partners in the project are the Institute for Silicate Research ISC (Würzburg), the Institute for Wood Research – Wilhelm-Klauditz-Institut WKI (Braunschweig), the Institute for Building Physics IBP (Holzkirchen/Stuttgart), the Institute for Ceramic Technologies and Systems IKTS (Dresden), the Institute for Interfacial Engineering and Biotechnology IGB (Stuttgart) and the Institute for Systems and Innovation Research ISI (Karlsruhe).

Carolyn Fisher | Fraunhofer-Institut
Further information:
http://www.ict.fraunhofer.de/

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>