Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular sorting for resource efficiency: new separation and recycling processes

08.08.2011
Decreasing supplies of raw materials, rapidly increasing demand in newly industrializing countries and increasingly tough environmental regulations – all these factors have contributed to the soaring price of raw materials. The only way to resolve this situation is through more efficient recycling management and improved separation and sorting technologies.

Researchers from the Fraunhofer-Gesellschaft in Germany will take on this challenge in a pioneering new project, funded as part of the Fraunhofer-Gesellschaft’s “Markets Beyond Tomorrow” research programme.

On 20th July 2011 the project “Molecular Sorting for Resource Efficiency”, coordinated by the Fraunhofer Institute for Chemical Technology ICT in Pfinztal, Germany, was officially started. The opening reception was attended by over twenty Fraunhofer researchers, representatives of the VDMA and of the president of the Fraunhofer-Gesellschaft.

The aim of the project is to close the gaps in material cycles with innovative recycling processes, which will enable resources already present in Germany to be recovered and reused in high-value applications. Starting with low concentrations of finely dispersed materials, or contaminated material flows, the developed processes will recover high-quality materials (of equal value to primary materials) on an industrial level. Examples include highly-transparent glasses, rare metals from slags and gases, and high-quality wood materials from wood scrap. The project will develop techniques for waste streams of glass, wood, composite materials, slags and hot gasses, and by the end of the project the developed processes should also be applicable to other material flows.

“These technologies have a huge application potential”, explains project leader Dr. Jörg Woidasky. “We estimate a market of 2 billion € for these technologies by 2020. Germany has taken on a leading position in this field, and in the commercialization of its developments on both a national and international level.”

The project will run for 3 years, and has received 4.5 million € funding from the Fraunhofer-Gesellschaft. Beside the Fraunhofer Institute for Chemical Technology ICT in Pfinztal, the other partners in the project are the Institute for Silicate Research ISC (Würzburg), the Institute for Wood Research – Wilhelm-Klauditz-Institut WKI (Braunschweig), the Institute for Building Physics IBP (Holzkirchen/Stuttgart), the Institute for Ceramic Technologies and Systems IKTS (Dresden), the Institute for Interfacial Engineering and Biotechnology IGB (Stuttgart) and the Institute for Systems and Innovation Research ISI (Karlsruhe).

Carolyn Fisher | Fraunhofer-Institut
Further information:
http://www.ict.fraunhofer.de/

More articles from Materials Sciences:

nachricht New material could lead to erasable and rewriteable optical chips
07.12.2016 | University of Texas at Austin

nachricht Porous crystalline materials: TU Graz researcher shows method for controlled growth
07.12.2016 | Technische Universität Graz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>