Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method found for controlling conductivity

05.05.2011
Reversible control of electrical and thermal properties could find uses in storage systems.

A team of researchers at MIT has found a way to manipulate both the thermal conductivity and the electrical conductivity of materials simply by changing the external conditions, such as the surrounding temperature. And the technique they found can change electrical conductivity by factors of well over 100, and heat conductivity by more than threefold.

“It’s a new way of changing and controlling the properties” of materials — in this case a class called percolated composite materials — by controlling their temperature, says Gang Chen, MIT’s Carl Richard Soderberg Professor of Power Engineering and director of the Pappalardo Micro and Nano Engineering Laboratories. Chen is the senior author of a paper describing the process that was published online on April 19 and will appear in a forthcoming issue of Nature Communications. The paper’s lead authors are former MIT visiting scholars Ruiting Zheng of Beijing Normal University and Jinwei Gao of South China Normal University, along with current MIT graduate student Jianjian Wang. The research was partly supported by grants from the National Science Foundation.

The system Chen and his colleagues developed could be applied to many different materials for either thermal or electrical applications. The finding is so novel, Chen says, that the researchers hope some of their peers will respond with an immediate, “I have a use for that!”

One potential use of the new system, Chen explains, is for a fuse to protect electronic circuitry. In that application, the material would conduct electricity with little resistance under normal, room-temperature conditions. But if the circuit begins to heat up, that heat would increase the material’s resistance, until at some threshold temperature it essentially blocks the flow, acting like a blown fuse. But then, instead of needing to be reset, as the circuit cools down the resistance decreases and the circuit automatically resumes its function.

Another possible application is for storing heat, such as from a solar thermal collector system, later using it to heat water or homes or to generate electricity. The system’s much-improved thermal conductivity in the solid state helps it transfer heat.

Essentially, what the researchers did was suspend tiny flakes of one material in a liquid that, like water, forms crystals as it solidifies. For their initial experiments, they used flakes of graphite suspended in liquid hexadecane, but they showed the generality of their process by demonstrating the control of conductivity in other combinations of materials as well. The liquid used in this research has a melting point close to room temperature — advantageous for operations near ambient conditions — but the principle should be applicable for high-temperature use as well.

The process works because when the liquid freezes, the pressure of its forming crystal structure pushes the floating particles into closer contact, increasing their electrical and thermal conductance. When it melts, that pressure is relieved and the conductivity goes down. In their experiments, the researchers used a suspension that contained just 0.2 percent graphite flakes by volume. Such suspensions are remarkably stable: Particles remain suspended indefinitely in the liquid, as was shown by examining a container of the mixture three months after mixing.

By selecting different fluids and different materials suspended within that liquid, the critical temperature at which the change takes place can be adjusted at will, Chen says.

“Using phase change to control the conductivity of nanocomposites is a very clever idea,” says Li Shi, a professor of mechanical engineering at the University of Texas at Austin. Shi adds that as far as he knows “this is the first report of this novel approach” to producing such a reversible system.

“I think this is a very crucial result,” says Joseph Heremans, professor of physics and of mechanical and aerospace engineering at Ohio State University. “Heat switches exist,” but involve separate parts made of different materials, whereas “here we have a system with no macroscopic moving parts,” he says. “This is excellent work.”

Caroline McCall | EurekAlert!
Further information:
http://www.mit.edu

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>