Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Materials scientists prevent wear in production facilities in the electronics industry

04.10.2012
Printed circuit boards (PCBs) are core components in every mobile phone, television and computer.

PCBs can be thought of as acting like a nervous system, forming a network that links the microchips mounted on the board and supplies them with power. One of the most important methods of fabricating large PCBs involves the precision electroplating of copper onto the PCB panel immersed in an acidic electrolyte bath.

However, some of the titanium parts used in the electroplating process suffer substantial wear within a short space of time. Replacing these parts generates significant costs. A materials science research team at Saarland University has now developed a new process.

This process enables the damaged components to repair themselves while the PCB fabrication process continues. Atotech, the company responsible for manufacturing almost 90 percent of all PCBs used in mobile phones worldwide, is now saving several millions of euros each year as a result. The new process, for which a patent application has been filed, was developed jointly by the Saarbrücken research group led by Professor Mücklich and the project group from Atotech. Recently, the Steinbeis Foundation in Stuttgart has chosen to honour the team’s achievements by conferring the Steinbeis Transfer Award 2012, which is bestowed annually for an outstanding example of technology transfer into the industrial sector.

Electronic components are becoming ever smaller and ever more powerful while at the same time having to be connected with one another in increasingly complex ways. “A printed circuit board today is an extremely complicated three-dimensional structure, that essentially acts like a central nervous system connecting all the various individual components,” explains Professor Frank Mücklich, Professor of Functional Materials at Saarland University and Director of the Steinbeis Material Engineering Center Saarland (MECS). The method typically used for high-precision fabrication of large-surface PCBs is acid copper electroplating, in which the PCB panel is immersed in an acidic solution of copper ions, the electrolyte. A very high electric current flows through the board transporting copper ions in the electrolyte to the surface of the PCB and into the minute holes, known as vias, into which the leads or contact pins of the electronic components will later be inserted. “As a result, the PCB is covered with a uniform extremely thin coating of copper whose thickness is less than one tenth of the diameter of a human hair,” says Mücklich.

The PCB panels are held in solution by acid-resistant titanium PCB plating clamps that guide the current onto the PCB panel. “These clamps have to withstand an enormous amount of electrical energy over an area of only a few square millimetres. The extremely powerful current generates sparks that are similar to a lightning discharge and that damage the clamps by eroding their surface each time the panels undergo plating,” says Mücklich, describing the fundamental problem of modern electroplating systems. The Saarbrücken material scientists examined the damage mechanisms using not only electron microscopy, but also tomographic techniques that allow imaging down to the nano- and even atomic scales. “We came to realise that with spark temperatures of around several thousands of degrees the previous strategy of trying to develop materials with ever greater resistance to these extremely hot and destructive sparks was not going to prove successful,” explains Mücklich.

Even the use of very expensive precious metals, such as platinum, only delays but does not stop the onset of damage. Working together with engineers from Atotech, the material scientists and technologists at Saarland University came up with an extremely economical and reliable solution. According to Mücklich: “The new process is similar to the mechanism used to regenerate human skin when wounds heal.”

The damaged clamps migrate in a circular path within the production facility as if on a carousel. And, like the PCBs that they hold, a new thin layer of copper is plated onto them. “We are essentially creating a recyclable wear layer on the clamps. This has the effect of immediately repairing any damage to the clamp surface and, quite incidentally, also increases the conductivity of the clamps several-fold,” says Mücklich. The new process means that there is no longer any need for the complex procedure of removing and replacing the clamps at Atotech’s many production facilities. The production process can therefore continue uninterrupted.
“Atotech is the market leader in this field, operating more than 600 production facilities of this type around the world. This new development will result in savings of several millions of euros each year,” says graduate engineer Bernd Schmitt, who has been Atotech’s coordinator on the research project. Atotech and the scientists and engineers from Saarland University have now filed jointly for a patent application.

The process was developed by materials scientist Frank Mücklich and his research assistants Dominik Britz and Christian Selzner in the space of just one year. To enable the research to be conducted, Atotech installed a purpose-built (and very heavy) test facility at the Steinbeis Research Centre that is located on the Saarbrücken campus. In the first stage of the project, the researchers used new three-dimensional imaging techniques to study what goes on inside the titanium contacts during electroplating. “We used high-resolution electron microscopy as well as nanotomography and atom-probe tomography. The images recorded with these techniques are then assembled in a computer to create a precise spatial representation – even down to the level of individual atoms,” explains Professor Mücklich.

In their search for more robust materials, the research team also used laser cladding to deposit microscopic layers of different materials onto the titanium contacts. They also employed laser interference structuring techniques to modify the surface of the clamps in an effort to make them more robust. While these techniques certainly improved the properties of the original titanium, the improvements were not sufficient to permanently withstand the enormous stresses to which the clamps are subjected during the PCB electroplating process. “This led us to the idea of using copper as a sacrificial layer that can be continuously replenished during the PCB production process.

The advantages of this approach are that copper is far cheaper than the other materials that had been tested and that it was already present in the system. It was this that ultimately led to the successful conclusion of the research project,” explains Frank Mücklich. In recognition of their efforts, Professor Mücklich, together with research assistants Dominik Britz and Christian Selzner and the project members from Atotech, will receive the Transfer Award, which is conferred by the Steinbeis Foundation and worth up to 60,000 euros, at a ceremony in Stuttgart.

Background: The Steinbeis Foundation’s Transfer Award

The Steinbeis Transfer Award is conferred for outstanding projects involving the successful transfer of competitively relevant knowledge and technology between science and industry. Transfer projects that have shown excellence in execution and have been completed successfully are considered particularly worthy of the award.
The Steinbeis Foundation for Economic Development with headquarters in Stuttgart provides support to research scientists to facilitate the transfer of their research results to industry. The 900 Steinbeis Centres that have been established in Germany and around the world form the Steinbeis Network that links knowledge and technology transfer centres, research centres and consulting and advisory centres across a very broad range of disciplines. The Steinbeis Foundation provides support to academic researchers looking to successfully transfer knowledge and technology into the industrial sector. The Steinbeis Foundation has been a Saarland University cooperation partner since 2002.

Questions can be addressed to:

Prof. Dr. Frank Mücklich
Chair of Functional Materials at Saarland University
Steinbeis-Research Center – Material Engineering Center Saarland (MECS)
Tel.: +49 (0)681 302-70500
Mail: muecke@matsci.uni-sb.de
Weitere Informationen:

http://www.uni-saarland.de/fuwe
http://www.mec-s.de
http://www.atotech.com/de
http://www.stw.de/wir-ueber-uns/loehn-preis

Friederike Meyer zu Tittingdorf | Universität des Saarlandes
Further information:
http://www.uni-saarland.de

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>