Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manufacturing: Chip-free ceramics

14.02.2013
Rethinking the process used to machine industrially important ceramics could reduce damaging cracks and chips

Ceramics are hard, chemically inert and can withstand high temperatures. These attributes make them ideal structural components in engines, high-performance disk brakes and medical implants.

However, as ceramics are also brittle, using conventional tools — such as drills — to machine them is difficult. Instead, manufacturers rely on ultrasonic machining, in which a ‘hammer’ rapidly vibrates up and down. This process pushes slurry, which contains fine and abrasive grit, into the material and causes chipping.

Research by G.C. Lim and co-workers at the A*STAR Institute of Manufacturing Technology, Singapore, has now improved understanding of how this abrading process creates cracks in a ceramic, making it less durable for applications1. The team’s findings could inspire new approaches to machining ceramics, a key element in Singapore’s rapidly growing manufacturing sector.

Ultrasonic machining is known to leave cracks at the entrance and exit of a drilled hole, and a rough surface within the hole. Often, these defects are visible only under a microscope; nonetheless, they make the hole and surrounding material more susceptible to wear and tear. “Imperfections act as initiating locations, where cracks and fractures occur and propagate more easily than other places, resulting in early failure of the component,” says Lim.

The researchers studied crack formation by drilling holes of between 0.7 and 3.0 millimeters in diameter into plates made of 3 industrially important ceramics: silicon carbide, zirconia and alumina. They recorded images of the cracks and chips along the inner sides of the holes with a microscope and then used diagrams to model the way force is transferred from the hammering tool to the grit, and from the grit into the ceramic.

Lim and his colleagues found that as the grit removes material — by making tiny pits or rubbing against the walls — it creates cracks, which can be up to four times longer than the grit particles and extend out radially from the hole. The team concluded that these cracks are inherent to the way ultrasonic machining works, which means the number of cracks can be reduced by using smaller grit particles but never entirely eliminated.

Lim says they are now in a better position to optimize the drilling process. Since the smallest grit particles yield the smoothest holes but make drilling take longer, Lim recommends a two-step process: quickly drill a slightly smaller hole than needed with a large grit size, and then use a smaller grit size to make the final hole with a smooth finish.

The A*STAR affiliated researchers contributing to this research are from the Singapore Institute of Manufacturing Technology

Associated links
http://www.research.a-star.edu.sg/research/6629
Journal information
Nath, C., Lim, G. C., & Zheng, H. Y. Influence of the material removal mechanisms on hole integrity in ultrasonic machining of structural ceramics. Ultrasonics 52, 605–613 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6629
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Researchers printed graphene-like materials with inkjet
18.08.2017 | Aalto University

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>